Land use types and anthropogenic activities represent considerable threats to groundwater pollution. To effectively monitor the groundwater quality, it is vital to measure pollution levels before they become severe. In our research area, located in Gilgit Baltistan in northern Pakistan, groundwater supplies are diminishing due to urban sprawl. In this study, we used a GIS-based DRASTIC model (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) to analyze the area’s hydrological attributes to assess the groundwater susceptibility to pollution. Considering the importance of anthropogenic activities, this research primarily utilizes an adjusted DRASTIC model called DRASTICA, which incorporates anthropogenic impact as a parameter in the model. The resulting map, which depicts vulnerability to groundwater contamination, reveals that 19% of the study area is classed as having high vulnerability, 42% has moderate vulnerability, 37% has low vulnerability, and 2% has very low vulnerability to groundwater contamination. The adopted validation process (nitrate parameter of water quality) revealed that the suggested DRASTICA model achieved better results than the established DRASTIC model in a built-up environment. We used the nitrate concentration in groundwater to verify the formulated results, and the single parameter sensitivity analysis and map removal sensitivity analysis to analyze the model sensitivity. The sensitivity analysis indicated that the groundwater vulnerability to pollution is largely influenced by anthropogenic impact and depth to the water table, thereby suggesting that anthropogenic impact must be explicitly tackled in such studies. The groundwater zones exposed to anthropogenic pollution can be better classified with the help of the proposed DRASTICA model, particularly in and around built-up environments. The responsible authorities can use this groundwater contamination data as an early warning sign, so they can take practical actions to avoid extra pressure on this vital resource.
Self-compacting concrete (SCC) is a special type of concrete that is highly flowable, nonsegregating and spread into place by its own weight, completely filling the formwork even in the presence of dense reinforcement and then encapsulating the rebar without the need for any additional compaction. This research was carried out to evaluate the effects of bentonite clay and wheat straw ash as a partial substitution for cement in SSC. Bentonite clay and wheat straw ash were added in proportion of 0%, 5.0%, 10%, 15%, and 20% of the weight of the cement. Fresh characteristics were evaluated based on its passing ability and flowability using slump flow, slump T50, L-box, and V-funnel tests. After 7 days, 14 days, and 28 days of curing, cylinders of standard size were cast and tested for compressive and split tensile strength. The test results indicate that bentonite clay and wheat straw ash decrease the passing ability and filling ability of SCC. Furthermore, the concrete specimens’ tests indicate that wheat straw ash and bentonite clay additions of up to 10% and 15% of the weight of the cement tend to improve the compressive and split tensile strength of hardened SCC. Response surface methodology (statistical models) is used to optimize the combined dosage of wheat straw ash and bentonite clay and is verified through experimental tests. It can also be suggested that bentonite and wheat straw ash are successfully neutralized in concrete instead of cement.
Land degradation caused by soil erosion is considered among the most severe problems of the 21stcentury. It poses serious threats to soil fertility, food availability, human health, and the world ecosystem. The purpose of the study is to make a quantitative mapping of soil loss in the Chitral district, Pakistan. For the estimation of soil loss in the study area, the Revised Universal Soil Loss Equation (RUSLE) model was used in combination with Remote Sensing (RS) and Geographic Information System (GIS). Topographical features of the study area show that the area is more vulnerable to soil loss, having the highest average annual soil loss of 78 ton/ha/year. Maps generated in the study show that the area has the highest sediment yield of 258 tons/ha/year and higher average annual soil loss of 450 tons/ha/year. The very high severity class represents 8%, 16% under high, 21% under moderate, 12% under low, and 13% under very low soil loss in the Chitral district. The above study is helpful to researchers and planners for better planning to control the loss of soil in the high severity zones. Plantation of trees and structures should be built like check dams, which effectively control the soil erosion process.
Geopolymer concrete (GPC), also known as an earth friendly concrete, has been under continuous study due to its environmental benefits and potential as a sustainable alternative to conventional concrete construction. However, there is still a lack of comprehensive studies focusing on the influence of all the design mix variables on the fresh and strength properties of GPC. GPC is still a relatively new material in terms of field application and has yet to secure international acceptance as a construction material. Therefore, it is important that comprehensive studies be carried out to collect more reliable information to expand this relatively new material technology to field and site applications. This research work aims to provide a comprehensive study on the factors affecting the fresh and hardened properties of ambient cured fly ash and slag based geopolymer concrete (FS-GPC). Industrial by-products, fly ash from thermal power plants, and ground granulated blast furnace slag from steel industries were utilized to produce ambient cured FS-GPC. A series of experiments were conducted to study the effect of various parameters, i.e., slag content (10%, 20%, 30%, and 50%), amount of alkaline activator solution (AAS) (35% and 40%), sodium silicate (SS) to sodium hydroxide (SH) ratio (SS/SH = 2.0, 2.5 and 3.0), sodium hydroxide concentration (10 M, 12 M, and 14 M) and addition of extra water on fresh and mechanical properties of FS-GPC. The workability of the fresh FS-GPC mixes was measured by the slump cone test. The mechanical properties of the mixes were evaluated by compressive strength, split tensile strength, flexure strength, and static modulus tests. The results revealed that workability of FS-GPC is greatly reduced by increasing slag content, molarity of NaOH solution, and SS/SH ratio. The compressive strength was improved with an increase in the molarity of NaOH solution and slag content and a decrease in AAS content from 40% to 35%. However, the influence of SS/SH ratio on mechanical properties of FS-GPC has a varying effect. The addition of extra water to enhance the workability of GPC matrix caused a decrease in the compressive strength. The validity of the equations suggested by previous studies to estimate the tensile and flexural strength and elastic modulus of FS-GPC mixes were also evaluated. Based on the test results of this study, empirical equations are proposed to predict the splitting tensile strength, flexural strength, and elastic modulus of ambient cured FS-GPC. The optimal mixtures of FS-GPC in terms of workability and mechanical properties were also proposed for the field applications.
Driver behavior has been considered as the most critical and uncertain criteria in the study of traffic safety issues. Driver behavior identification and categorization by using the Fuzzy Analytic Hierarchy Process (FAHP) can overcome the uncertainty of driver behavior by capturing the ambiguity of driver thinking style. The main goal of this paper is to examine the significant driver behavior criteria that influence traffic safety for different traffic cultures such as Hungary, Turkey, Pakistan and China. The study utilized the FAHP framework to compare and quantify the driver behavior criteria designed on a three-level hierarchical structure. The FAHP procedure computed the weight factors and ranked the significant driver behavior criteria based on pairwise comparisons (PCs) of driver’s responses on the Driver Behavior Questionnaire (DBQ). The study results observed “violations” as the most significant driver behavior criteria for level 1 by all nominated regions except Hungary. While for level 2, “aggressive violations” is observed as the most significant driver behavior criteria by all regions except Turkey. Moreover, for level 3, Hungary and Turkey drivers evaluated the “drive with alcohol use” as the most significant driver behavior criteria. While Pakistan and China drivers evaluated the “fail to yield pedestrian” as the most significant driver behavior criteria. Finally, Kendall’s agreement test was performed to measure the agreement degree between observed groups for each level in a hierarchical structure. The methodology applied can be easily transferable to other study areas and our results in this study can be helpful for the drivers of each region to focus on highlighted significant driver behavior criteria to reduce fatal and seriously injured traffic accidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.