Predictive models have been suggested as potential tools for identifying highest risk patients for hospital readmissions, in order to improve care coordination and ultimately long-term patient outcomes. However, the accuracy of current predictive models for readmission prediction is still moderate and further data enrichment is needed to identify at risk patients. This paper describes models to predict 90-day readmission, focusing on testing the predictive performance of wearable sensor features generated using multiscale entropy techniques and clinical features. Our study explores ways to incorporate pre-discharge and post-discharge wearable sensor features to make robust patient predictions. Data were used from participants enrolled in the AllofUs Research program. We extracted the inpatient cohort of patients and integrated clinical data from the electronic health records (EHR) and Fitbit sensor measurements. Entropy features were calculated from the longitudinal wearable sensor data, such as heart rate and mobility-related measurements, in order to characterize time series variability and complexity. Our best performing model achieved an AUC of 83%, and at 80% sensitivity achieved 75% specificity and 57% positive predictive value. Our results indicate that it would be possible to improve the ability to predict unplanned hospital readmissions by considering pre-discharge and post-discharge wearable features.
Sepsis is a life-threatening condition that occurs due to a dysregulated host response to infection. Recent data demonstrate that patients with sepsis have a significantly higher readmission risk than other common conditions, such as heart failure, pneumonia and myocardial infarction and associated economic burden. Prior studies have demonstrated an association between a patient's physical activity levels and readmission risk. In this study, we show that distribution of activity level prior and post-discharge among patients with sepsis are predictive of unplanned rehospitalization in 90 days (P-value<1e-3). Our preliminary results indicate that integrating Fitbit data with clinical measurements may improve model performance on predicting 90 days readmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.