The magnitude of the impact of altitude gradient on microbial community and diversity has been studied in recent decades. Whereas bacteria have been the focus of most studies, fungi have been given relatively less attention. As a vital part of the macro- and microscopic ecosystem, rhizosphere fungi play a key role in organic matter decomposition and relative abundance of plant species and have an impact on plant growth and development. Using Duchesnea indica as the host plant, we examined the rhizosphere soil fungal community patterns across the altitude gradient in 15 sites of Yunnan province by sequencing the fungal ITS2 region with the Illumina MiSeq platform. We determined the fungal community composition and structure. We found that, surprisingly, rhizosphere soil fungal diversity of D. indica increased with altitudinal gradient. There was a slight difference in diversity between samples from high- and medium-altitude sites, with medium-altitude sites having the greater diversity. Furthermore, the rhizosphere soil fungal community composition and structure kept changing along the altitudinal gradient. Taxonomic results showed that the extent of phylum diversity was greatest at high-altitude sites, with Ascomycota, Basidiomycota, Zygomycota, and Glomeromycota as the most dominant fungal phyla.
Based on 243 current valid distribution records for six wild strawberry species in China and data on 20 environmental variables, the geographical distributions of and potentially suitable areas for the wild strawberry species in Yunnan Province (China) under the current climate scenario were explored using the MaxEnt model and ArcGIS software, and major environmental variables affecting their geographical distributions were evaluated. In addition, the spatio-temporal dynamic patterns of the suitable areas for the six wild strawberry species in Yunnan Province in the 2050s and 2070s under the two climate models of RCP2.6 and RCP8.5 were predicted. Under the current climate scenario, the six wild strawberry species have suitable areas in Yunnan Province, which were mainly distributed in the high-altitude and low-temperature regions in the northwest and northeast, such as Diqing and Zhaotong. In addition, the average size of the highly suitable area for diploid wild strawberry species was greater than that for tetraploid species. Under the future climate scenarios, the average size of the highly suitable area for diploid species showed a tendency to expand, while that of tetraploid species showed a tendency to shrink. Altitude was a critical variable affecting the distribution of tetraploid species. Under the two future climate models of RCP2.6 and RCP8.5, the suitable areas for wild strawberry species shifted to the regions of high latitude, high altitude, and low temperature. In addition, the average distance in the shift of the suitable area for tetraploid strawberry species was greater than that for the suitable area for diploid strawberry species. The above results provide valuable information for the management and protection of the germplasm resources of Fragaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.