Faba beans are highly nutritious because of their high protein content: they are a good source of mineral nutrients, vitamins, and numerous bioactive compounds. Equally important is the contribution of faba bean in maintaining the sustainability of agricultural systems, as it is highly efficient in the symbiotic fixation of atmospheric nitrogen. This article provides an overview of factors influencing faba bean yield and quality, and addresses the main biotic and abiotic constraints. It also reviews the factors relating to the availability of genetic material and the agronomic features of faba bean production that contribute to high yield and the improvement of European cropping systems. Emphasis is to the importance of using new high-yielding cultivars that are characterized by a high protein content, low antinutritional compound content, and resistance to biotic and abiotic stresses. New cultivars should combine several of these characteristics if an increased and more stable production of faba bean in specific agroecological zones is to be achieved. Considering that climate change is also gradually affecting many European regions, it is imperative to breed elite cultivars that feature a higher abiotic–biotic stress resistance and nutritional value than currently used cultivars. Improved agronomical practices for faba bean crops, such as crop establishment and plant density, fertilization and irrigation regime, weed, pest and disease management, harvesting time, and harvesting practices are also addressed, since they play a crucial role in both the production and quality of faba bean.
×One of key questions in breeding for organic agriculture is about most appropriate selection environment. A successful man-made cereal species, triticale (Triticosecale Wittm. ex A. Camus.) - is very suitable for growing in organic crop management systems but little research has been conducted on breeding triticale for organic agriculture. Field trials were carried out in Priekuïi during 2009-2012. One hundred F4 winter triticale lines were sown in conventionally and organically managed fields. Selection of the approximately ten best lines in each environment, according to breeders’ opinion with respect to suitability for organic conditions, was made. The selected lines were compared in both organic and conventional fields. The study did not show that there was a need to create varieties for organic farming by selection of triticale in the initial generations in organic fields.
Glechoma hederacea L. is a medicinal plant that is known in traditional medicine for its anti-inflammatory, antibacterial, antiviral, and anticancer properties. This study evaluated the potential for commercial production of G. hederacea and compared the chemical composition and activity of 70% ethanol extracts and steam-distilled essential oils from wild-grown and cultivated G. hederacea collected in different harvesting periods. The main compounds identified in the 70% ethanol extracts were phenolic acids (chlorogenic and rosmarinic acids) and flavonoid O-glycosides. The essential oil varied in the three accessions in the range of 0.32–2.98 mL/kg−1 of dry weight. The extracts possessed potent antioxidant and anti-inflammatory properties in LPS-treated bone-marrow-derived macrophages. The results of flow cytometry show that extracts from different vegetation periods reduced the conversion of macrophages to the proinflammatory phenotype M1. The chemical composition varied the most with the different harvesting periods, and the most suitable periods were the flowering and vegetative phases for the polyphenolic compounds and essential oils, respectively. G. hederacea can be successfully grown under organic farming conditions, and cultivation does not significantly affect the chemical composition and biological activity compared to wild-grown plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.