Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long‐term experiments on physical‐chemical‐biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology.
Drought is a predominant cause of low yields worldwide. There is an urgent need for more water efficient cropping systems facing large water consumption of irrigated agriculture and high unproductive losses via runoff and evaporation. Identification of yield-limiting constraints in the plant-soil-atmosphere continuum are the key to improved management of plant water stress. Crop ecology provides a systematic approach for this purpose integrating soil hydrology and plant physiology into the context of crop production. We review main climate, soil and plant properties and processes that determine yield in different water-limited environments. From this analysis, management measures for cropping systems under specific drought conditions are derived. Major findings from literature analysis are as follows. (1) Unproductive water losses such as evaporation and runoff increase from continental in-season rainfall climates to storage-dependent winter rainfall climates. Highest losses occur under tropical residual moisture regimes with short intense rainy season. (2) Sites with a climatic dry season require adaptation via phenology and water saving to ensure stable yields. Intermittent droughts can be buffered via the root system, which is still largely underutilised for better stress resistance. (3) At short-term better management options such as mulching and date of seeding allow to adjust cropping systems to site constraints. Adapted cultivars can improve the synchronisation between crop water demand and soil supply. At long term, soil hydraulic and plant physiological constraints can be overcome by changing tillage systems and breeding new varieties with higher stress resistance. (4) Interactions between plant and soil, particularly in the rhizosphere, are a way towards better crop water supply. Targeted management of such plant-soil interactions is still at infancy.We conclude that understanding site-specific stress hydrology is imperative to select the most efficient measures to mitigate stress. Major progress in future can be expected from crop ecology focussing on the management of complex plant (root)-soil interactions.
Understanding the impact of roots and rhizosphere traits on plant resource efficiency is important, in particular in the light of upcoming shortages of mineral fertilizers and climate change with increasing frequency of droughts. We developed a modular approach to root growth and architecture modelling with a special focus on soil root interactions. The dynamic three-dimensional model is based on L-Systems, rewriting systems well-known in plant architecture modelling. We implemented the model in Matlab in a way that simplifies introducing new features as required. Different kinds of tropisms were implemented as stochastic processes that determine the position of the different roots in space. A simulation study was presented for phosphate uptake by a maize root system in a pot experiment. Different sink terms were derived from the root architecture, and the effects of gravitropism and chemotropism were demonstrated. This root system model is an open and flexible tool which can easily be coupled to different kinds of soil models.
AimsSmall scale root-pore interactions require validation of their impact on effective hydraulic processes at the field scale. Our objective was to develop an interpretative framework linking root effects on macroscopic pore parameters with knowledge at the rhizosphere scale.MethodsA field experiment with twelve species from different families was conducted. Parameters of Kosugi’s pore size distribution (PSD) model were determined inversely from tension infiltrometer data. Measured root traits were related to pore variables by regression analysis. A pore evolution model was used to analyze if observed pore dynamics followed a diffusion like process.ResultsRoots essentially conditioned soil properties at the field scale. Rooting densities higher than 0.5 % of pore space stabilized soil structure against pore loss. Coarse root systems increased macroporosity by 30 %. Species with dense fine root systems induced heterogenization of the pore space and higher micropore volume. We suggested particle re-orientation and aggregate coalescence as main underlying processes. The diffusion type pore evolution model could only partially capture the observed PSD dynamics.ConclusionsRoot systems differing in axes morphology induced distinctive pore dynamics. Scaling between these effective hydraulic impacts and processes at the root-pore interface is essential for plant based management of soil structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.