Noise is a wide-spread stress factor in modern life produced by urbanization, traffic, and an industrialized environment. Noise stress causes dysfunction and neurotransmission impairment in the central nervous system, as well as changes in hormone levels. In this study, we have examined the level of α-Tocopherol (α-T) and malondialdehyde (MDA) in plasma and the erythrocytes’ membrane (EM), as well as the behavioral characteristics of a noise-induced stress model in rats. In addition, the modulating effect of α2-adrenoblockers, beditin, and mesedin on the aforementioned parameters has been investigated. For these purposes, albino male rats were divided into four groups: (1) untreated; (2) noise-exposed, (3) noise-exposed and beditin-treated (2 mg/kg, i.p.), and (4) noise-exposed and mesedin-treated (10 mg/kg, i.p.) animals. Noise-exposed groups were treated with 91dBA noise on 60 days with a daily duration of 8 h. Increased MDA and decreased α-T levels in plasma and EM were observed upon chronic high-level noise exposure. Locomotor and behavioral activity assessed with a Y-maze revealed disorientation and increased anxiety under chronic noise exposure. Prominently, α2-adrenoblockers alleviated both behavioral deficits and oxidative stress, providing evidence for the involvement of α2-adrenoceptor in the pathophysiology of noise-induced stress.
Background:
Noise is one of the environmental factors, which is considered as a powerful stressor for the organism. Generally, the acoustic stress affects the behavior and physiological state of humans and animals.
Aims:
The goal of this study is to investigate the relationship between chronic noise exposure and the effects of adrenergic alpha-2 receptor antagonists, beditin and mesedin, on the anxiety and oxidation of plasma proteins and fibrinogen in rats.
Methods:
The experiments were carried out on non-linear albino male rats, divided into four groups (six animals in each): 1. Healthy controls 2. Exposed to noise of a level 91 dB(A), eight hours daily, during 7, 30 and 60 days; 3. Injected with 2 mg/kg of beditin (2-(2-amino-4-thiazolyl)-1,4-benzodioxane hydrochloride)); 4. Injected with 10 mg/kg mesedin (2-(2-methyl-amino-thiozolyl)-1,4-benzodioxane hydrochloride). For evaluating the cognitive impairment, the Any-maze test was applied. The level of carbonylation of proteins was assessed by reaction with 2,4-dinitrophenylhydrazine, spectrophotometrically.
Results:
Chronic noise decreased locomotor activity and increased anxiety and oxidation of plasma protein and fibrinogen. Intensity of these changes were dependent on the duration of noise exposure.
Conclusion:
The Alpha 2 adrenoblockers alleviate oxidative modification of plasma proteins and reduce the cognitive impairment caused by chronic exposure to noise.
The mammalian target of rapamycin (mTOR) is an important molecular regulator of cell growth and proliferation. Brain mTOR activity plays a crucial role in synaptic plasticity, cell development, migration and proliferation, as well as memory storage, protein synthesis, autophagy, ion channel expression and axonal regeneration. Aberrant mTOR signaling causes a diverse group of neurological disorders, termed ‘mTORopathies’. Typically arising from mutations within the mTOR signaling pathway, these disorders are characterized by cortical malformations and other neuromorphological abnormalities that usually co-occur with severe, often treatment-resistant, epilepsy. Here, we discuss recent advances and current challenges in developing experimental models of mTOR-dependent epilepsy and other related mTORopathies, including using zebrafish models for studying these disorders, as well as outline future directions of research in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.