Genome-wide association studies (GWAS) of serum metabolites have the potential to uncover genes that influence human metabolism. Here, we combined an integrative genetic analysis associating serum metabolites to membrane transporters with a coessentiality map of metabolic genes. This analysis revealed a connection between feline leukemia virus subgroup C cellular receptor 1 (FLVCR1) - a plasma membrane protein - and phosphocholine, a downstream metabolite of choline metabolism. Loss of FLVCR1 in human cells and in mice strongly impairs choline metabolism due to a block in choline import. Consistently, CRISPR-based genetic screens identified several components of the membrane phospholipid machinery as synthetic lethal with FLVCR1 loss. Finally, cells lacking FLVCR1 exhibit mitochondrial defects and upregulate the integrated stress response (ISR) through heme regulated inhibitors kinase (HRI). Altogether, these findings identify FLVCR1 as a universal mediator of choline transport in mammals and provide a platform to discover substrates for unknown metabolite transporters.
Ethanol and lactate are typical waste products of glucose fermentation. In mammals, glucose is catabolized by glycolysis into circulating lactate, which is broadly used throughout the body as a carbohydrate fuel. Individual cells can both uptake and excrete lactate, uncoupling glycolysis from glucose oxidation. Here we show that similar uncoupling occurs in the yeast Saccharomyces cerevisiae. Even in fermenting yeast that are net releasing ethanol, media 13C-ethanol rapid enters and is oxidized to acetaldehyde and acetyl-CoA. This is evident in exogenous ethanol being a major source of both cytosolic and mitochondrial acetyl units. 2H-tracing reveals that ethanol is also a major source of both NADH and NADPH, and this role is augmented under oxidative stress conditions. Thus, uncoupling of glycolysis from the oxidation of glucose-derived carbon via rapid reversible reactions is an ancient and conserved feature of eukaryotic metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.