Rationale: The availability of therapeutics to treat pregnancy complications is severely lacking, mainly due to the risk of harm to the fetus. In placental malaria, Plasmodium falciparum-infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) on the surfaces of trophoblasts. Based on this principle, we have developed a method for targeted delivery of payloads to the placenta using a synthetic placental CSA-binding peptide (plCSA-BP) derived from VAR2CSA, a CSA-binding protein expressed on IEs.Methods: A biotinylated plCSA-BP was used to examine the specificity of plCSA-BP binding to mouse and human placental tissue in tissue sections in vitro. Different nanoparticles, including plCSA-BP-conjugated nanoparticles loaded with indocyanine green (plCSA-INPs) or methotrexate (plCSA-MNPs), were administered intravenously to pregnant mice to test their efficiency at drug delivery to the placenta in vivo. The tissue distribution and localization of the plCSA-INPs were monitored in live animals using an IVIS imaging system. The effect of plCSA-MNPs on fetal and placental development and pregnancy outcome were examined using a small-animal high-frequency ultrasound (HFUS) imaging system, and the concentrations of methotrexate in fetal and placental tissues were measured using high-performance liquid chromatography (HPLC).Results: plCSA-BP binds specifically to trophoblasts and not to other cell types in the placenta or to CSA-expressing cells in other tissues. Moreover, we found that intravenously administered plCSA-INPs accumulate in the mouse placenta, and ex vivo analysis of the fetuses and placentas confirmed placenta-specific delivery of these nanoparticles. We also demonstrate successful delivery of methotrexate specifically to placental cells by plCSA-BP-conjugated nanoparticles, resulting in dramatic impairment of placental and fetal development. Importantly, plCSA-MNPs treatment had no apparent adverse effects on maternal tissues.Conclusion: These results demonstrate that plCSA-BP-guided nanoparticles could be used for the targeted delivery of payloads to the placenta and serve as a novel placenta-specific drug delivery option.
The novel adipokine chemerin plays a role in regulating lipid and carbohydrate metabolism, and recent reports of elevated chemerin levels in polycystic ovarian syndrome elevated chemerin levels with polycystic ovary syndrome and preeclampsia point to an emerging role for chemerin in reproduction. We hypothesized that chemerin, like other adipokines, may function to regulate male gonadal steroidogenesis. Here we show that chemerin and its three receptors chemokine-like receptor 1 (CMKLR1), G-protein coupled receptor 1 (GPR1) and chemokine (C-C motif) receptor-like 2 (CCRL2) were expressed in male reproductive tracts, liver and white adipose tissue. CMKLR1 and GPR1 protein were localized specifically in the Leydig cells of human and rat testes by immunohistochemistry. The expression of chemerin and its receptors in rat testes was developmentally regulated and highly expressed in Leydig cells. In vitro treatment with chemerin suppressed the human chorinoic gonadotropin (hCG)-induced testosterone production from primary Leydig cells, which was accompanied by the inhibition of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) gene and protein expression. The hCG-activated p44/42 mitogen-activated-protein kinase (MAPK) (Erk1/2) pathway in Leydig cells was also inhibited by chemerin co-treatment. Together, these data suggest chemerin is a novel regulator of male gonadal steroidogenesis.
Rhodosporidium toruloides is a red, basidiomycetes yeast that can accumulate a large amount of lipids and produce carotenoids. To better assess this non-model yeast’s metabolic capabilities, we reconstructed a genome-scale model of R. toruloides IFO0880’s metabolic network (iRhto1108) accounting for 2204 reactions, 1985 metabolites and 1108 genes. In this work, we integrated and supplemented the current knowledge with in-house generated biomass composition and experimental measurements pertaining to the organism’s metabolic capabilities. Predictions of genotype-phenotype relations were improved through manual curation of gene-protein-reaction rules for 543 reactions leading to correct recapitulations of 84.5% of gene essentiality data (sensitivity of 94.3% and specificity of 53.8%). Organism-specific macromolecular composition and ATP maintenance requirements were experimentally measured for two separate growth conditions: (i) carbon and (ii) nitrogen limitations. Overall, iRhto1108 reproduced R. toruloides’s utilization capabilities for 18 alternate substrates, matched measured wild-type growth yield, and recapitulated the viability of 772 out of 819 deletion mutants. As a demonstration to the model’s fidelity in guiding engineering interventions, the OptForce procedure was applied on iRhto1108 for triacylglycerol overproduction. Suggested interventions recapitulated many of the previous successful implementations of genetic modifications and put forth a few new ones.
Maternal circulating levels of the adipokine chemerin are elevated in preeclampsia, but its origin and contribution to preeclampsia remain unknown. We therefore studied 1) placental chemerin expression and release in human pregnancy, and 2) the consequences of chemerin overexpression via lentivirus-mediated trophoblast-specific gene manipulation in both mice and immortalized human trophoblast. Placental chemerin expression and release were increased in women with preeclampsia, and their circulating chemerin levels correlated positively with the soluble Fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor ratio, a well-known biomarker of preeclampsia severity. Placental trophoblast chemerin overexpression in mice induced a preeclampsia-like syndrome, involving hypertension, proteinuria, and endotheliosis, combined with diminished trophoblast invasion, a disorganized labyrinth layer, and upregulation of sFlt-1 and the inflammation markers nuclear factor-kappa B, tumor necrosis factor-α and interleukin-1β. It also led to embryo resorption, while maternal serum chemerin levels correlated negatively with fetal weight in mice. Chemerin overexpression in human trophoblasts upregulated sFlt-1, reduced vascular endothelial factor-A, and inhibited migration and invasion, as well as tube formation during co-culture with human umbilical vein endothelial cells. The chemokine-like receptor 1 (CMKLR1) antagonist α-NETA prevented the latter phenomena, although it did not reverse the chemerin-induced downregulation of the phosphoinositide 3-kinase/Akt pathway. In conclusion, upregulation of placental chemerin synthesis disturbs normal placental development via its CMKLR1 receptor, thereby contributing to fetal growth restriction/resorption and the development of preeclampsia. Chemerin might be a novel biomarker of preeclampsia, and inhibition of the chemerin/CMKLR1 pathway is a promising novel therapeutic strategy to treat preeclampsia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.