This paper proposes multilevel architecture for an intelligent control system for the complex chemical energy technological process of yellow phosphorus production from apatite-nepheline ore processing waste. The research revealed that, when controlling this process, one has to deal with large amounts of multiformat and polymodal information, and control goals differ at different levels not only in effectiveness criteria, but also in the structuredness of the level problems. On this basis, it is proposed that intelligent methods be used for the implementation of information processes and control goals at individual levels and the whole system. The artificial intelligence methods underlying the informational model of a control system offer solutions to problems of analyzing control processes at different hierarchy levels, namely the initial level of sensing devices, the levels of programmable logic controllers, dispatching of control and production processes, enterprise management and strategic planning. Besides, the intelligent control system architecture includes analytical and simulation models of processes occurring in the multistage procedure of ore waste processing by a plant consisting of a granulating machine, a conveyor-type multichambercalcining machine, and an ore thermal furnace. The architecture of information support for the control system comprises a knowledge-based inference block intended for implementing the self-refinement of neural network and simulation models. Fuzzy logic methods are proposed for constructing this block. The paper considers the deployment of control algorithms for a phosphorus production system using the Matlab software environment on the basis of a modern complex system development paradigm known as the model-oriented design concept.
A feature of energy systems (ESs) is the diversity of objects, as well as the variety and manifold of the interconnections between them. A method for monitoring ESs clusters is proposed based on the combined use of a fuzzy cognitive approach and dynamic clustering. A fuzzy cognitive approach allows one to represent the interdependencies between ESs objects in the form of fuzzy impact relations, the analysis results of which are used to substantiate indicators for fuzzy clustering of ESs objects and to analyze the stability of clusters and ESs. Dynamic clustering methods are used to monitor the cluster structure of ESs, namely, to assess the drift of cluster centers, to determine the disappearance or emergence of new clusters, and to unite or separate clusters of ESs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.