Calcium phosphate bions (CPB) are biomimetic mineralo-organic nanoparticles which represent a physiological mechanism regulating the function, transport and disposal of calcium and phosphorus in the human body. We hypothesised that CPB may be pathogenic entities and even a cause of cardiovascular calcification. Here we revealed that CPB isolated from calcified atherosclerotic plaques and artificially synthesised CPB are morphologically and chemically indistinguishable entities. Their formation is accelerated along with the increase in calcium salts-phosphates/serum concentration ratio. Experiments in vitro and in vivo showed that pathogenic effects of CPB are defined by apoptosis-mediated endothelial toxicity but not by direct tissue calcification or functional changes in anti-calcification proteins. Since the factors underlying the formation of CPB and their pathogenic mechanism closely resemble those responsible for atherosclerosis development, further research in this direction may help us to uncover triggers of this disease.
Heterogeneous tabular data are the most commonly used form of data and are essential for numerous critical and computationally demanding applications. On homogeneous datasets, deep neural networks have repeatedly shown excellent performance and have therefore been widely adopted. However, their adaptation to tabular data for inference or data generation tasks remains highly challenging. To facilitate further progress in the field, this work provides an overview of state-of-the-art deep learning methods for tabular data. We categorize these methods into three groups: data transformations, specialized architectures, and regularization models. For each of these groups, our work offers a comprehensive overview of the main approaches. Moreover, we discuss deep learning approaches for generating tabular data and also provide an overview over strategies for explaining deep models on tabular data. Thus, our first contribution is to address the main research streams and existing methodologies in the mentioned areas while highlighting relevant challenges and open research questions. Our second contribution is to provide an empirical comparison of traditional machine learning methods with 11 deep learning approaches across five popular real-world tabular datasets of different sizes and with different learning objectives. Our results, which we have made publicly available as competitive benchmarks, indicate that algorithms based on gradient-boosted tree ensembles still mostly outperform deep learning models on supervised learning tasks, suggesting that the research progress on competitive deep learning models for tabular data is stagnating. To the best of our knowledge, this is the first in-depth overview of deep learning approaches for tabular data; as such, this work can serve as a valuable starting point to guide researchers and practitioners interested in deep learning with tabular data.
Heterogeneous tabular data are the most commonly used form of data and are essential for numerous critical and computationally demanding applications. On homogeneous data sets, deep neural networks have repeatedly shown excellent performance and have therefore been widely adopted. However, their application to modeling tabular data (inference or generation) remains highly challenging. This work provides an overview of state-of-the-art deep learning methods for tabular data. We start by categorizing them into three groups: data transformations, specialized architectures, and regularization models. We then provide a comprehensive overview of the main approaches in each group. A discussion of deep learning approaches for generating tabular data is complemented by strategies for explaining deep models on tabular data. Our primary contribution is to address the main research streams and existing methodologies in this area, while highlighting relevant challenges and open research questions. To the best of our knowledge, this is the first in-depth look at deep learning approaches for tabular data. This work can serve as a valuable starting point and guide for researchers and practitioners interested in deep learning with tabular data.
Tabular data is among the oldest and most ubiquitous forms of data. However, the generation of synthetic samples with the original data's characteristics still remains a significant challenge for tabular data. While many generative models from the computer vision domain, such as autoencoders or generative adversarial networks, have been adapted for tabular data generation, less research has been directed towards recent transformer-based large language models (LLMs), which are also generative in nature. To this end, we propose GReaT (Generation of Realistic Tabular data), which exploits an auto-regressive generative LLM to sample synthetic and yet highly realistic tabular data. Furthermore, GReaT can model tabular data distributions by conditioning on any subset of features; the remaining features are sampled without additional overhead. We demonstrate the effectiveness of the proposed approach in a series of experiments that quantify the validity and quality of the produced data samples from multiple angles. We find that GReaT maintains state-of-the-art performance across many real-world data sets with heterogeneous feature types.tl&dr The proposed GReaT approach utilizes the capabilities of pretrained large language models to synthesize realistic tabular data. A challenging set of experiments validates the GReaT method's high generative qualtity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.