Radioligand binding assay conditions were established for the selective labeling of sigma-1 and sigma-2 sites in membrane homogenates of rat brain. Selective sigma-1 assays were conducted using 5 nM(+)[3H]SKF-10,047 in the presence of 300 nM dizocilpine (MK-801). Selective sigma-2 assays were conducted using 5 nM [3H]DTG in the presence of 1 microM (+)SKF-10,047. Distributions of sigma-1 and sigma-2 binding among brain regions were found to differ. While the brain stem yields the highest level of sigma-1 binding, it yields among the lowest levels of sigma-2 binding. The reverse is true in hippocampal membranes. Different ontogenetic patterns were also observed. Sigma-2 binding decreases substantially during brain development, whereas sigma-1 binding does not vary significantly. Patterns of distribution among subcellular fractions of rat brain homogenates were found to be similar. Both sigma-1 and sigma-2 sites are most enriched in microsomal fractions, and neither is enriched in synaptosomal or mitochondrial fractions. The present results suggest that sigma-1 and sigma-2 sites are distinct entities; they do not appear to be located on a common macromolecule, and they do not represent two different affinity states of a single type of binding site. While the precise subcellular locations of sigma-1 and sigma-2 sites remain to be determined, we conclude that localization of either type of binding site to synaptic regions of plasma membrane or to mitochondria is highly unlikely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.