Uncontrolled self-association is a major challenge in the exploitation of proteins as therapeutics. Here we describe the development of a structural proteomics approach to identify the amino acids responsible for aberrant self-association of monoclonal antibodies and the design of a variant with reduced aggregation and increased serum persistence in vivo. We show that the human monoclonal antibody, MEDI1912, selected against nerve growth factor binds with picomolar affinity, but undergoes reversible self-association and has a poor pharmacokinetic profile in both rat and cynomolgus monkeys. Using hydrogen/deuterium exchange and cross-linking-mass spectrometry we map the residues responsible for self-association of MEDI1912 and show that disruption of the self-interaction interface by three mutations enhances its biophysical properties and serum persistence, whilst maintaining high affinity and potency. Immunohistochemistry suggests that this is achieved via reduction of non-specific tissue binding. The strategy developed represents a powerful and generic approach to improve the properties of therapeutic proteins.
As biomarker discovery takes centre-stage, the role of immunohistochemistry within that process is increasing. At the same time, the number of antibodies being produced for “research use” continues to rise and it is important that antibodies to be used as biomarkers are validated for specificity and sensitivity before use. This guideline seeks to provide a stepwise approach for the validation of an antibody for immunohistochemical assays, reflecting the views of a consortium of academic and pharmaceutical based histopathology researchers. We propose that antibodies are placed into a tier system, level 1–3, based on evidence of their usage in immunohistochemistry, and that the degree of validation required is proportionate to their place on that tier.
How the immune system senses aeroallergens and triggers an aberrant inflammation is poorly understood. Dectin-2 is a house dust mite (HDM)-sensing pattern recognition receptor. In a 3-week mouse model of repeated intranasal HDM challenge, anti-Dectin-2 potently attenuated the characteristic allergic inflammation and airway hyper-responsiveness. Anti-Dectin-2 also prevented neutrophil influx following a single HDM challenge. Interestingly, cysteinyl leukotrienes, but not chemokine and cytokine levels were inhibited by anti-Dectin-2 in this acute model, and in ex vivo challenge of cultured alveolar macrophages with HDM. Furthermore in the single-challenge model, zileuton, an inhibitor of leukotriene production, produced a similar effect as Dectin-2 blockade. Together these data suggest alveolar macrophage sensing of HDM by Dectin-2 elicits the production of cysteinyl leukotrienes, and this axis is key for the initiation of airway inflammation to this aeroallergen. Finally, we found Dectin-2-positive infiltrating cells present in bronchial biopsies from asthmatic subjects.
Viral respiratory tract infections are known triggers of asthma exacerbations in both adults and children. The current standard of care, inhaled CS (corticosteroids) and LABAs (long-acting β2-adrenoceptor agonists), fails to prevent the loss of control that manifests as an exacerbation. In order to better understand the mechanisms underlying viral asthma exacerbations we established an in vivo model using the clinically relevant aeroallergen HDM (house dust mite) and the viral mimetic/TLR3 (Toll-like receptor 3) agonist poly(I:C). Poly(I:C) alone induced a similar neutrophilic inflammatory profile in the BAL (bronchoalveolar lavage) to that of HRV1b (human rhinovirus 1b) alone, accompanied by both elevated BAL KC (keratinocyte-derived chemokine) and IL-1β (interleukin-1β). When mice allergic to HDM were also challenged with poly(I:C) the neutrophilic inflammatory profile was exacerbated. Increased CD8(+) T-cell numbers, increased CD4(+) and CD8(+) cell activation and elevated KC and IL-1β were observed. No increases in Th2 cytokines or the eosinophil chemoattractant CCL11 [chemokine (C-C motif) ligand 11], above those induced by HDM alone, were observed. The poly(I:C)-exacerbated neutrophilia did not translate into changes in AHR (airways hyper-responsiveness), indicating that in this model inflammation and AHR are two mechanistically independent events. To test the clinical relevance of this model CS sensitivity was assessed using prednisone, a synthetic oral CS used to manage exacerbations in asthmatic patients already on maximal doses of inhaled CS. The increased neutrophils, and accompanying cytokines/chemokines KC and IL-1β induced by poly(I:C) challenge of HDM-sensitized and challenged mice were insensitive to oral prednisone therapy. In summary we have described a CS-resistant mouse model mimicking the key aspects of viral asthma exacerbation using the clinically relevant aeroallergen HDM and the viral mimic poly(I:C). This model may provide better understanding of disease mechanisms underlying viral exacerbations and could be used to build early confidence in novel therapeutic axes targeting viral asthma exacerbations in Th2 asthmatics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.