RESUMO Diferentemente das estruturas moldadas no local, os sistemas pré-moldados de concreto apresentam basicamente como particularidades: projeto das ligações e a consideração de outras situações de cálculo diferentes da final de projeto. Essas situações são as fases da etapa transitória, envolvendo: desmoldagem, armazenamento, transporte e montagem. Nesta etapa, a peça pode apresentar esquemas estáticos e solicitações diferentes, podendo ocasionar uma condição mais crítica em E.L.U ou E.L.S. A exemplo disso, pode-se citar o caso do pilar pré-moldado que durante esta etapa apresenta comportamento de viga devido a sua posição horizontal. Assim, objetivo deste trabalho é realizar um estudo da posição das alças de içamento em um pilar pré-moldado de concreto que apresenta fases transitórias críticas, de modo a buscar uma posição admissível desses vínculos que resulte na melhor distribuição de esforços e controle da fissuração. Para tal, foi realizada uma análise paramétrica durante a fase de desmoldagem e montagem com o elemento dispondo de 2 alças, cujos parâmetros obtidos com a variação da posição das alças foram: momentos fletores, tensão na armadura e coeficiente redutor de rigidez para as seções mais solicitadas. Na sequência, foram obtidos os mesmos parâmetros, todavia empregando 3 alças na ocasião do saque e 3 pontos para o içamento, totalizando 3 posições típicas de esquema estático para essas fases. Os resultados mostraram que ao empregar 3 alças foi possível o controle da fissuração, redução da armadura necessária e da tensão nas mesmas. A análise paramétrica constatou-se que a rigidez do elemento seria superior a 0,50.EI somente com um nível de tensão abaixo de 0,30, mostrando que não necessariamente limitar a tensão na armadura em 0,50.fyk é uma garantia de E.L.S-F admissível, evidenciando ainda que a perda de rigidez em etapa transitória deve ser considerada, pois não basta atender as condições normativas somente em etapa final de projeto.
Provided that the anchorage capacity is guaranteed at the supports, the bearing capacity of hollow core slabs depends on the shear capacity of the pretensioned concrete webs, wherein the critical section is in a region between h and 2h from the support. For line loads acting within 2h to 6h from the supports, especially for shallow slabs 150 to 200 mm deep, it is likely to have flexure-shear cracks within the transfer region, wherein the bearing capacity is highly affected by the actual prestressing forces at the critical section. Therefore, one of the major questions pondered by structural engineers is to determine the effective amount of prestressing force that affects the shear resistance mechanism near to the support. According to ABNT NBR 14861:2011, the shear capacity is based on the flexure-shear mechanism, wherein the shear strength is a sum of the tensile concrete strength in the slab webs plus the contribution of the prestressing forces at the critical section, wherein a coefficient of 0.15 is considered. However, in both codes NBR 14861 and NBR 6118 it is required that this coefficient 0.15 should be further multiplied by an additional reduction factor in order to take into account the effect of the transmission length near to the support. Considering the current revision of the NBR 14861, this paper presents a theoretical-experimental comparison from standard shear tests of hollow core slabs with nominal depths from 150 to 200 mm carried out in different research at NETPre-UFSCar. Based on the analytical study of each term of the equation for the flexure-shear capacity, it has been observed that the coefficient 0.15 provides a conservative limit for the contribution of the actual prestressing force. Therefore, there is no need to apply any additional reduction factor in order to guarantee a safe design limit for the shear capacity.
Precast structures for multi-storey buildings can be designed with economy, safety and high performance. However, depending on the height of the building and the intensity of the lateral loads, the lateral stability system must be carefully chosen in order to maximize the global structural performance. In Brazil, the most common method for lateral stability is achieved by moment resisting precast-frames, wherein the moment-rotation response of the beam-column connections are responsible to provide the frame action, which will govern the distribution of internal forces and the sway distribution along the building height. On the other hand, in Europe, bracing systems comprised by shear walls or infill walls are mostly used, wherein beam-column connections are designed as hinged. The aim of this paper is to present a comparison between these methods for lateral stability, applying nine structural simulations with moment resisting precast-frames, shear walls and infill walls solutions, divided in three groups - 3 building with 5 storeys (21 meters high), 3 buildings with 10 storeys (41 meters high) and 3 building with 20 storeys (81 meters high). All first storeys are 5 meters high, while all the others are 4 meters high. The results from all structural analyses are compared. As conclusion, while moment-resisting beam-column connections are more feasible for applying in low-rise precast buildings, the use of shear walls and infill walls are more efficient for tall buildings due to decrease of lateral displacements, having a reduction of second order effects but also increasing the reactions at the foundations of bracing elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.