A model of orthographic processing is described that postulates read-out from different information dimensions, determined by variable response criteria set on these dimensions. Performance in a perceptual identification task is simulated as the percentage of trials on which a noisy criterion set on the dimension of single word detector activity is reached. Two additional criteria set on the dimensions of total lexical activity and time from stimulus onset are hypothesized to be operational in the lexical decision task. These additional criteria flexibly adjust to changes in stimulus material and task demands, thus accounting for strategic influences on performance in this task. The model unifies results obtained in response-limited and data-limited paradigms and helps resolve a number of inconsistencies in the experimental literature that cannot be accommodated by other current models of visual word recognition.
The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.
Basic research has established a strong relationship between stimulus induced human motivation for approach-related behavior and left-frontal electrophysiological activity in the alpha band, i.e. frontal alpha asymmetry (FAA). Since approach motivation is also of interest for various fields of applied research, several recent studies investigated the usefulness of FAA as a diagnostic tool of stimulus induced motivational changes. The present review introduces the theory and the methods commonly used in approach/ withdrawal motivation research, and summarizes work on applied FAA with a focus on product design, marketing, brain-computer communication and mental health studies, where approach motivation is of interest. Studies investigating and developing the application of FAA training in the treatment of affective disorders such as major depressive disorder and anxiety disorder are also introduced, highlighting some of the future possibilities.
This perspective paper discusses four general desiderata of current computational stylistics and (neuro-)cognitive poetics concerning the development of (a) appropriate databases/training corpora, (b) advanced qualitative-quantitative narrative analysis (Q2NA) and machine learning tools for feature extraction, (c) ecologically valid literary test materials, and (d) open-access reader-response data banks. In six explorative computational stylistics studies, it introduces a number of tools that provide QNA indices of the foregrounding potential at the sublexical, lexical, inter- and supralexical levels for poems by Shakespeare, Blake, or Dickens. These concern lexical diversity and aesthetic potential, sentiment analysis, sublexical sonority scores or phrase structure, and topics analysis. The results illustrate the complex interplay of stylistic features and the necessity for theoretical guidance and interdisciplinary cooperation in selecting adequate training corpora, QNA tools, test texts, and response measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.