Although cyst(e)ine is nutritionally a non-essential amino acid, lymphoid cells cannot synthesize it, rendering their growth dependent on uptake of cyst(e)ine from their microenvironment. Accordingly, we previously suggested that the x(c)- plasma membrane cystine transporter provided a target for lymphoid cancer therapy. Its inhibition could lead to cyst(e)ine deficiency in lymphoma cells via reduction of both their cystine uptake and cysteine supply by somatic cells. In this study, using rat Nb2 lymphoma cultures, drugs were screened for growth arrest based on x(c)- inhibition. Sulfasalazine was fortuitously found to be a novel, potent inhibitor of the x(c)- transporter. It showed high rat lymphoma growth-inhibitory and lytic activity in vitro (IC50 = 0.16 mM), based specifically on inhibition of x(c)--mediated cystine uptake, in contrast to its colonic metabolites, sulfapyridine and 5-aminosalicylic acid. Sulfasalazine was even more effective against human non-Hodgkin's lymphoma (DoHH2) cultures. In rats (n = 13), sulfasalazine (i.p.) markedly inhibited growth of well-developed, rapidly growing rat Nb2 lymphoma transplants without apparent side-effects. Reduced, macrophage-mediated supply of cysteine was probably involved. In five rats, 90-100% tumor growth suppression, relative to controls, was obtained. The x(c)- cystine transporter represents a novel target for sulfasalazine-like drugs with high potential for application in therapy of lymphoblastic and other malignancies dependent on extracellular cyst(e)ine.
The antiretroviral agent efavirenz enhances the systemic clearance of coadministered drugs that are cytochrome P450 (CYP) 3A4 substrates. The mechanism of the apparent increase in CYP3A4 activity by efavirenz and the magnitude of change relative to other known inducers are not known. The authors tested the hypothesis that increased enzymatic activity by efavirenz entails CYP3A4 induction and activation of the human pregnane X receptor (hPXR), a key transcriptional regulator of CYP3A4. Employing primary cultures of human hepatocytes, they compared the CYP3A4 inductive effects of efavirenz (1-10 microM) to rifampin (10 microM) and phenobarbital (2 mM). A cell-based reporter assay was employed to assess hPXR activation. The authors observed that efavirenz caused a concentration-dependent CYP3A4 induction and hPXR activation. Based on the CYP3A4 activity assay, the average magnitude of induction by efavirenz (5-10 microM) was approximately 3- to 4-fold. In comparison, phenobarbital (2 mM) and rifampin (10 microM) caused a 5- and 6-fold induction, respectively.
IntroductionThe breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers.MethodsSerotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells.ResultsIn the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation.ConclusionsOur data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer.
This article is available online at http://dmd.aspetjournals.org ABSTRACT:Tamoxifen is a widely utilized antiestrogen in the treatment and chemoprevention of breast cancer. Clinical studies document that tamoxifen administration markedly enhances the systemic elimination of other drugs. Additionally, tamoxifen enhances its own clearance following repeated dosing. The mechanisms that underlie these clinically important events remain unresolved. Here, we report that tamoxifen and its metabolite 4-hydroxytamoxifen markedly induce cytochrome P450 3A4, a drug-metabolizing enzyme of central importance, in primary cultures of human hepatocytes. Tamoxifen and 4-hydroxytamoxifen (1-10 M) significantly increased the CYP3A4 expression and activity (measured as the rate of testosterone 6-hydroxylation). Maximal induction was achieved at the 5 M level. At this level, tamoxifen and 4-hydroxytamoxifen caused a 1.5-to 3.3-fold (mean, 2.1-fold) and 3.4-to 17-fold (mean, 7.5-fold) increase in the CYP3A4 activity, respectively. In comparison, rifampicin treatment resulted in a 6-to 16-fold (mean, 10.5-fold) increase. We also observed corresponding increase in the CYP3A4 immunoreactive protein and mRNA levels. Furthermore, tamoxifen and 4-hydroxytamoxifen efficaciously activated the human pregnane X receptor (hPXR; also known as the steroid xenobiotic receptor), a key regulator of CYP3A4 expression. The efficacy of tamoxifen and 4-hydroxytamoxifen relative to rifampicin for hPXR activation was ϳ30 and 60%, respectively. Our results indicate that the mechanism of tamoxifen-mediated alteration in drug clearance pathways in humans may involve CYP3A4 induction by the parent drug and/or its metabolite. Furthermore, the CYP3A4 induction may be a result of hPXR activation. These findings have important implications for optimizing the use of tamoxifen and in the development of newer antiestrogens.Tamoxifen, a nonsteroidal triphenylethylene, is currently the endocrine therapeutic agent of choice for all stages of breast cancer. It was also recently approved for use as a chemopreventive agent in women with high risk of contracting this disease in the future. Despite its well documented beneficial effects, tamoxifen use is associated with several major problems including serious drug-drug interactions. Several clinical trials indicate that tamoxifen has the propensity to alter the drug elimination pathway(s), resulting in markedly reduced plasma levels of coadministered compounds. In this regard, recently completed clinical trials indicate that tamoxifen reduced the plasma levels of aromatase inhibitors letrozole and anastrozole by 37 and 27%, respectively ATAC Trialists' Group, 2001). Such drug-drug interactions are of special concern with tamoxifen since numerous women are required to take tamoxifen daily for an extended time period and as such are likely to be simultaneously exposed to many drugs and nutraceuticals. Another consequence of tamoxifen-induced changes in drug disposition is that tamoxifen pharmacokinetics exhibit time-depende...
SASP-induced cystine/cysteine starvation leading to glutathione depletion may be useful for therapy of prostate cancers dependent on extracellular cystine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.