We are interested in a kinetic equation intended to describe the interaction of particles with their environment. The environment is modeled by a collection of local vibrational degrees of freedom. We establish the existence of weak solutions for a wide class of initial data and external forces. We also identify a relevant regime which allows us to derive, quite surprisingly, the attractive Vlasov-Poisson system from the coupled Vlasov-Wave equations.
We study a kinetic equation of the Vlasov-Wave type, which arises in the description of the behaviour of a large number of particles interacting weakly with an environment, composed of an infinite collection of local vibrational degrees of freedom, modeled by wave equations. We use variational techniques to establish the existence of large families of stationary states for this system, and analyze their stability.
We investigate the large time behavior of the solutions of a Vlasov-Fokker-Planck equation where particles are subjected to a confining external potential and a self-consistent potential intended to describe the interaction of the particles with their environment. The environment is seen as a medium vibrating in a direction transverse to particles' motion. We identify equilibrium states of the model and justify the asymptotic trend to equilibrium. The analysis relies on hypocoercivity techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.