Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions and cell polarity, resulting in the acquisition of migratory and invasive properties. However, the precise molecular events that initiate this complex EMT process in head and neck cancers are poorly understood. Increasing evidence suggests that tumor microenvironment plays an important role in promoting EMT in tumor cells. We have previously shown that head and neck tumors exhibit significantly higher Bcl-2 expression in tumor-associated endothelial cells and overexpression of Bcl-2 alone in tumor-associated endothelial cells was sufficient to enhance tumor metastasis of oral squamous cell carcinoma in a SCID mouse model. In this study, we show that endothelial cells expressing Bcl-2 (EC-Bcl-2), when co-cultured with head and neck tumor cells (CAL27), significantly enhance EMT-related changes in tumor cells predominantly by the secretion of IL-6. Treatment with recombinant IL-6 or stable IL-6 overexpression in CAL27 cells or immortalized oral epithelial cells (IOE) significantly induced the expression of mesenchymal marker, vimentin, while repressing E-cadherin expression via the JAK/STAT3/Snail signaling pathway. These EMT-related changes were further associated with enhanced tumor and IOE cell scattering and motility. STAT3 knock-down significantly reversed IL-6-mediated tumor and IOE cell motility by inhibiting FAK activation. Furthermore, tumor cells overexpressing IL-6 showed marked increase in lymph node and lung metastasis in a SCID mouse xenograft model. Taken together, these results demonstrate a novel function for IL-6 in mediating EMT in head and neck tumor cells and increasing their metastatic potential.
BackgroundMicroRNAs (miRs) are small non-coding RNAs that play an important role in cancer development where they can act as oncogenes or as tumor-suppressors. miR-34a is a tumor-suppressor that is frequently downregulated in a number of tumor types. However, little is known about the role of miR-34a in head and neck squamous cell carcinoma (HNSCC).Methods and ResultsmiR-34a expression in tumor samples, HNSCC cell lines and endothelial cells was examined by real time PCR. Lipofectamine-2000 was used to transfect miR-34a in HNSCC cell lines and human endothelial cells. Cell-proliferation, migration and clonogenic survival was examined by MTT, Xcelligence system, scratch assay and colony formation assay. miR-34a effect on tumor growth and tumor angiogenesis was examined by in vivo SCID mouse xenograft model. Our results demonstrate that miR-34a is significantly downregulated in HNSCC tumors and cell lines. Ectopic expression of miR-34a in HNSCC cell lines significantly inhibited tumor cell proliferation, colony formation and migration. miR-34a overexpression also markedly downregulated E2F3 and survivin levels. Rescue experiments using microRNA resistant E2F3 isoforms suggest that miR-34a-mediated inhibition of cell proliferation and colony formation is predominantly mediated by E2F3a isoform. In addition, tumor samples from HNSCC patients showed an inverse relationship between miR-34a and survivin as well as miR-34a and E2F3 levels. Overexpression of E2F3a completely rescued survivin expression in miR-34a expressing cells, thereby suggesting that miR-34a may be regulating survivin expression via E2F3a. Ectopic expression of miR-34a also significantly inhibited tumor growth and tumor angiogenesis in a SCID mouse xenograft model. Interestingly, miR-34a inhibited tumor angiogenesis by blocking VEGF production by tumor cells as well as directly inhibiting endothelial cell functions.ConclusionsTaken together, these findings suggest that dysregulation of miR-34a expression is common in HNSCC and modulation of miR34a activity might represent a novel therapeutic strategy for the treatment of HNSCC.
Till date, an exact causative pathway responsible for neurodegeneration in Huntington's disease (HD) remains elusive; however, mitochondrial dysfunction appears to play an important role in HD pathogenesis. Therefore, strategies to attenuate mitochondrial impairments could provide a potential therapeutic intervention. In the present study, we used curcumin encapsulated solid lipid nanoparticles (C-SLNs) to ameliorate 3-nitropropionic acid (3-NP)-induced HD in rats. Results of MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and succinate dehydrogenase (SDH) staining of striatum revealed a marked decrease in Complex II activity. However, C-SLN-treated animals showed significant increase in the activity of mitochondrial complexes and cytochrome levels. C-SLNs also restored the glutathione levels and superoxide dismutase activity. Moreover, significant reduction in mitochondrial swelling, lipid peroxidation, protein carbonyls and reactive oxygen species was observed in rats treated with C-SLNs. Quantitative PCR and Western blot results revealed the activation of nuclear factor-erythroid 2 antioxidant pathway after C-SLNs administration in 3-NP-treated animals. In addition, C-SLN-treated rats showed significant improvement in neuromotor coordination when compared with 3-NP-treated rats. Thus, the results of this study suggest that C-SLNs administration might be a promising therapeutic intervention to ameliorate mitochondrial dysfunctions in HD.
BackgroundPreviously alternate nostril yoga breathing (anuloma-viloma pranayama) was shown to reduce the blood pressure (BP) in people with hypertension. An elevated BP has been associated with poor performance in certain tasks requiring attention and co-ordination. The Purdue pegboard task assesses manual dexterity and eye-hand co-ordination.Material/MethodsIn the present study there were ninety participants with essential hypertension. Their ages ranged from 20 to 59 years (group average age ±S.D., 49.7±9.5 years; sixty males). Participants were randomized as three groups, with thirty participants in each group. One group practiced alternate nostril yoga breathing for 10 minutes, the second group practiced breath awareness for the same duration and the third group was given a control intervention (i.e., reading a magazine with neutral content). Assessments were taken before and after the interventions for participants of the three groups. Assessments included the blood pressure and performance in the Purdue pegboard task. Data were analyzed with a repeated measures ANOVA and post-hoc analyses were Bonferroni adjusted.ResultsFollowing alternate nostril breathing (ANYB) there was a significant decrease in systolic and diastolic blood pressure (p<0.001 and p<0.05), and an improvement in Purdue pegboard task scores for both hands (p<0.05), and for the right hand (p<.001). Breath awareness (the control session) also showed a significant decrease in systolic blood pressure (p<0.05). The right hand scores improved in the group reading a magazine (p<0.05).ConclusionsThe results suggest that the immediate effect of ANYB is to reduce the BP while improving the performing in a task requiring attention, bimanual dexterity and visuo-motor co-ordination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.