The increased use of transgenic mice as experimental animals provides new opportunities to study the biology of fracture repair. We have developed a technique for the production of a standard closed experimental fracture in the mouse tibia. A 0.2 mm stainless-steel rod was introduced into the medullary cavity and the pre-nailed tibial shaft was fractured by an impact device, which resulted in a reproducible transverse or slightly oblique fracture pattern. The intramedullary rod maintained axial alignment, and the fractures united without displacement. On the basis of measurements of callus geometry, four-point bending tests, biochemical analyses, and quantitative histology, the progress of callus formation and remodeling occurred in a predictable sequence of healing phases. The ultimate bending loads of the fractures increased with time, reaching 74% of the strength of intact control tibias in 4 weeks. The stiffness values of the fractures returned to normal levels and, as determined radiographically, the fractures united by external callus in 4 weeks. Radiographically, callus size, cross-sectional callus area, and callus mass peaked at 2 weeks and decreased thereafter, indicating the start of external remodeling. Histologically, the amount of mesenchymal tissue was maximal at days 5 and 7. The callus cartilage area peaked at day 9; at its maximum, it accounted for 46% of the total callus area. Early periosteal formation of membranous new bone, followed by endochondral ossification, resulted in a linear increase of callus bone during the healing process. The healing sequence of the mouse tibial fracture was similar to that seen in the rat tibia.(ABSTRACT TRUNCATED AT 250 WORDS)
It is clear from this study that no single test is able to show the presence of infection in every case. Classical clinical signs, laboratory tests, special imaging studies and joint aspirations have all yielded a notable rate of false negative results. Therefore, we recommend that, if arthroplasty patients have pain in prosthetic joint without clear radiological evidence of loosening, bone scans and preoperative joint aspirations should be undertaken. Also, if radiological evidence of loosening is accompanied with one or more of following criteria; C-reactive protein level elevated, radiologic evidence of infection, loosening within the first five years after implantation. In case of infection a delayed two-stage reconstruction should be managed.
Patients' knowledge expectations are greater than the knowledge they perceived that they receive, and they cannot become empowered if they lack important knowledge. Further research is needed to learn about meeting patients' knowledge expectations.
Colloidal lead-free perovskite nanocrystals have recently received extensive attention because of their facile synthesis, the outstanding size-tunable optoelectronic properties, and less or no toxicity in their commercial applications. Tin (Sn) has so far led to the most efficient lead-free solar cells, yet showing highly unstable characteristics in ambient conditions. Here, we propose the synthesis of all-inorganic mixture Sn-Ge perovskite nanocrystals, demonstrating the role of Ge 2+ in stabilizing Sn 2+ cation while enhancing the optical and photophysical properties. The partial replacement of Sn atoms by Ge atoms in the nanostructures effectively fills the high density of Sn vacancies, reducing the surface traps and leading to a longer excitonic lifetime and increased photoluminescence quantum yield. The resultant Sn-Ge nanocrystals-based devices show the highest efficiency of 4.9 %, enhanced by nearly 60 % compared to that of pure Sn nanocrystals-based devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.