A non-equilibrium diffusion–reaction model is proposed to describe chloride transport and binding in cementitious materials. A numerical solution for this non-linear transport with reaction problem is obtained using the finite element method. The effective chloride diffusion coefficients and parameters of the chloride binding are determined using the inverse method based on a diffusion–reaction model and experimentally measured chloride concentrations. The investigations are performed for two significantly different cements: ordinary Portland and blast furnace cements. The results are compared with the classical diffusion model and appropriate apparent diffusion coefficients. The role of chloride binding, with respect to the different binding isotherms applied, in the overall transport of chlorides is discussed, along with the applicability of the two models. The proposed work allows the determination of important parameters that influence the longevity of concrete structures. The developed methodology can be extended to include more ions, electrostatic interactions, and activity coefficients for even more accurate estimation of the longevity.
The calorimetric measurements were applied in testing the wastes collected from different furnaces in electric power plants as materials to be used in civil engineering. The fly ash materials were collected from two power stations based on different brown coal deposits and working with conventional and fluidized bed installation. The reactivity of high calcium fly ash from sub-bituminous coal combustion has been proved in calorimetric, conductometric, chemical shrinkage, and rheological measurements before their practical implementation on larger scale. Highly soluble components of fly ash contribute to the hydration products and structure formation, followed by setting and hardening of fly ash-cement mixture. These results have been the base of research project aimed in the innovative solutions dealing with the management of deposits of wastes generated as a result of coal combustion. The standardization and potential use on larger scale of these materials, necessary from the environmental point of view, seems to be the question of nearest future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.