Fumarate reductase (Escherichia coli) can be immobilized in an extremely electroactive state at an electrode, with retention of native catalytic properties. The membrane-extrinsic FrdAB component adsorbs to monolayer coverage at edge-oriented pyrolytic graphite and catalyzes reduction of fumarate or oxidation of succinate, depending upon the electrode potential. In the absence of substrates, reversible redox transformations of centers in the enzyme are observed by cyclic voltammetry. The major component of the voltammograms is a pair of narrow reduction and oxidation signals corresponding to a pH-sensitive couple with formal reduction potential E degree' = -48 mV vs SHE at pH 7.0 (25 degrees C). This is assigned to two-electron reduction and oxidation of the active-site FAD. A redox couple with E degree' = -311 mV at pH 7 is assigned to center 2 ([4Fe-4S]2+/1+). Voltammograms for fumarate reduction at 25 degrees C, measured with a rotating-disk electrode, show high catalytic activity without the low-potential switch-off that is observed for the related enzyme succinate dehydrogenase. The catalytic electrochemistry is interpreted in terms of a basic model incorporating mass transport of substrate, interfacial electron transfer, and intrinsic kinetic properties of the enzyme, each of these becoming a rate-determining factor under certain conditions. Electrochemical reversibility is approached under conditions of low turnover rate, for example, as the supply of substrate to the active site is limited. In this situation, electrocatalytic half-wave potentials, E1/2, are similar for oxidation of bulk succinate and reduction of bulk fumarate and coincide closely with the E degree' value assigned to the FAD. At 25 degrees C and pH 7, the apparent KM for fumarate reduction is 0.16 mM, and kcat is 840 s-1. Accordingly the second-order rate constant, kcat/KM, is 5.3 x 10(6) M-1 s-1. Under the same conditions, oxidation of succinate is much slower. As the supply of fumarate to the enzyme is raised to increase turnover, the electrochemical reaction eventually becomes limited by the rate of electron transfer from the electrode. Under these conditions a second catalytic wave becomes evident, the E1/2 value of which corresponds to the reduction potential of the redox couple suggested to be center 2. This small boost to the catalytic current indicates that the low-potential [4Fe-4S] cluster can function as a second center for relaying electrons to the FAD.
The reduction of dioxygen to water by cytochrome c oxidase was monitored in the Soret region following photolysis of the fully reduced CO complex. Time-resolved optical absorption difference spectra collected between 373 and 521 nm were measured at delay times from 50 ns to 50 ms and analyzed using singular value decomposition and multiexponential fitting. Five processes were resolved with apparent lifetimes of 0.9 micros, 8 micros, 36 micros, 103 micros, and 1.2 ms. A mechanism is proposed and spectra of intermediates are extracted and compared to model spectra of the postulated intermediates. The model builds on an earlier mechanism that used data only from the visible region (Sucheta et al. (1997) Biochemistry 36, 554-565) and provides a more complete mechanism that fits results from both spectral regions. Intermediate 3, the ferrous-oxy complex (compound A) decays into a 607 nm species, generally referred to as P, which is converted to a 580 nm ferryl form (Fo) on a significantly faster time scale. The equilibrium constant between P and Fo is 1. We propose that the structure of P is a3(4+)=O CuB2+-OH- with an oxidizing equivalent residing on tyrosine 244, located close to the binuclear center. Upon conversion of P to Fo, cytochrome a donates an electron to the tyrosine radical, forming tyrosinate. Subsequently a proton is taken up by tyrosinate, forming F(I) [a3(4+)=O CuB2+-OH- a3+ CuA+]. This is followed by rapid electron transfer from CuA to cytochrome a to produce F(II) [a3(4+)=O CuB2+-OH- a2+ CuA2+].
In mitochondria, electrons derived from the oxidation of succinate by the tricarboxylic acid cycle enzyme succinate-ubiquinone oxido-reductase are transferred directly to the quinone pool. Here we provide evidence that the soluble form of this enzyme (succinate dehydrogenase) behaves as a diode that essentially allows electron flow in one direction only. The gating effect is observed when electrons are exchanged rapidly and directly between fully active succinate dehydrogenase and a graphite electrode. Turnover is therefore measured under conditions of continuously variable electrochemical potential. The otherwise rapid and efficient reduction of fumarate (the reverse reaction) is severely retarded as the driving force (overpotential) is increased. Such behaviour can arise if a rate-limiting chemical step like substrate binding or product release depends on the oxidation state of a redox group on the enzyme. The observation provides, for a biological electron-transport system, a simple demonstration of directionality that is enforced by kinetics as opposed to that which is assumed from thermodynamics.
The reaction between bovine heart cytochrome oxidase and dioxygen was investigated at room temperature following photolysis of the fully reduced CO-bound enzyme. Time-resolved optical absorption difference spectra were collected by a gated multichannel analyzer in the visible region (lambda = 460-720 nm) from 50 ns to 50 ms after photolysis. Singular value decomposition (SVD) analysis indicated the presence of at least seven intermediates. Multiexponential fitting gave the following apparent lifetimes: 1.2 microseconds, 10 microseconds, 25 microseconds, 32 microseconds, 86 microseconds, and 1.3 ms. On the basis of the SVD results and a double difference map, a sequential kinetic mechanism is proposed from which the spectra and time-dependent populations of the reaction intermediates were determined. The ferrous-oxy complex (compound A), with a peak at 595 nm and a trough at 612 nm versus the reduced enzyme, reaches a maximum concentration approximately 30 microseconds after photolysis. It decays to a 1:6 mixture of peroxy species (a3(3+)-O(-)-O-) in which cytochrome a is reduced and oxidized. Cytochrome a3 in both species has a peak at 606 nm versus its oxidized form. The peroxy species decay to a ferryl intermediate, with a peak at 578 nm versus the oxidized enzyme, followed by electron redistribution between CuA and cytochrome a. The two ferryl species reach a maximum concentration approximately 310 microseconds after photolysis. The excellent agreement between the experimental and theoretical spectra of the intermediates provides unequivocal evidence for the presence of peroxy and ferryl species during dioxygen reduction by cytochrome oxidase at room temperature.
Succinate dehydrogenase (SDH), the membrane-extrinsic component of Complex II, adsorbs at a pyrolytic graphite edge electrode and catalyzes interconversion of succinate and fumarate depending on the electrochemical potential that is applied. The catalytic activity is measured over a continuous potential range, leading to a quantitative description of the interlinked energetics and kinetics of catalyzed electron transport, including the degree to which the enzyme is intrinsically tuned, at a particular pH, to function either in the direction of succinate oxidation or fumarate reduction. It is revealed that under reversible conditions (i.e. near the reduction potential of the fumarate/succinate couple) and at the physiological temperature of 38 °C, SDH is biased to catalyze fumarate reduction (reversal of the tricarboxylic acid cycle) at pH values below 7.7. Subtle effects which gate electron transport are detected. First, the sharp drop in catalytic activity observed as the potential is made more negative is an intrinsic property that is associated with two-electron/two-proton reduction of the FAD, and second, binding and release of the competitive inhibitor/regulator oxalacetate is observed as the enzyme is cycled between FADox (tight binding) and FADred (weaker binding) states. It is thereby demonstrated how the electron-transport characteristics of a complex redox enzyme, integrating both kinetic and thermodynamic information, can be derived from voltammetric experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.