We study heat traces associated with positive unbounded operators with compact inverses. With the help of the inverse Mellin transform we derive necessary conditions for the existence of a short time asymptotic expansion. The conditions are formulated in terms of the meromorphic extension of the associated spectral zetafunctions and proven to be verified for a large class of operators. We also address the problem of convergence of the obtained asymptotic expansions. General results are illustrated with a number of explicit examples.
Abstract.We investigate the leading terms of the spectral action for odd-dimensional Riemannian spin manifolds with the Dirac operator perturbed by a scalar function. We calculate first two Gilkey-de Witt coefficients and make explicit calculations for the case of n-spheres with a completely symmetric Dirac. In the special case of dimension 3, when such perturbation corresponds to the completely antisymmetric torsion, we carry out the noncommutative calculation following Chamseddine and Connes (J Geom Phys 57:121, 2006) and study the case of SU q (2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.