The Volta potential difference between Ih ice single crystals and different metals has been measured as a function of the temperature by using the vibrating electrode technique. Reproducible results have been obtained with ice–gold and ice–copper contacts, indicating that in these cases the equilibrium has been attained. At temperatures below −30 °C the dependence is linear, and we think that this is the effect of the impurity content on the ice Fermi level. At higher temperatures a term which is logarithmic in (Tm−T), where Tm is the melting temperature of ice, is added. This additional pd has proved to be localized at the ice surface and ranges from 0 to 150 mV; it can be directly related to the appearance and thickening of the polarized, liquidlike layer predicted by N. H. Fletcher, if we assume that a constant electric field exists in the layer interior. The preferred dipole orientation turns out to be that with the oxygens outwards. We also obtained the approximate value of 4.3 eV for the ice work function.
The thermal contraction of ice single crystals between 0 and −50 °C has been measured by the use of silicon strain gauges frozen on the crystal basal surface. The experimental results cannot be explained without assuming the existence of a Newtonian viscous layer at the ice-strain-gauge interface; this layer has a thickness which changes in temperature as predicted by Fletcher, and a viscosity intermediate between that of ice and that of supercooled water. The activation energy of the viscosity, (0.36±0.04) eV, seems to indicate that it is controlled by a vacancy mechanism in which only the vacancy migration is effective.
Ice Ih single crystals were investigated by complex admittance and thermally stimulated depolarization (TSD) techniques, in the relaxation-time ranges 10–5–10 s and 10–104 s respectively. The relaxation spectrum was resolved and three components of it were studied. Second-order kinetics had to be assumed for two of the TSD spectra to obtain Arrhenius-type relaxation times. The “Debye spectrum” had an activation energy for the relaxation time of 0.64 eV at the high temperatures and its dielectric strength revealed a possible defect cross-over at T c = 190 K. Far below this temperature the activation energy was 0.38 eV, that is about half of that necessary for a pair of ion defects to form. In comparison with the results of other authors, a lower concentration of ionic defects, or possibly of Bjerrum–ion aggregates, was deduced to occur in our crystals. Inert-gas host molecules were proposed as a possible origin of the two other spectra, having relaxation times shorter than the “Debye spectrum” and energies of 0.33 eV and 0.37 eV. Moreover the 0.33 eV spectrum, whose dielectric strength appears at a temperature below T c, might alternatively be related to the cross-over of the “Debye spectrum”.
Ice Ih single crystals were investigated by complex admittance and thermally stimulated depolarization (TSD) techniques, in the relaxation-time ranges 10–5–10 s and 10–104 s respectively.The relaxation spectrum was resolved and three components of it were studied. Second-order kinetics had to be assumed for two of the TSD spectra to obtain Arrhenius-type relaxation times. The “Debye spectrum” had an activation energy for the relaxation time of 0.64 eV at the high temperatures and its dielectric strength revealed a possible defect cross-over at Tc = 190 K. Far below this temperature the activation energy was 0.38 eV, that is about half of that necessary for a pair of ion defects to form. In comparison with the results of other authors, a lower concentration of ionic defects, or possibly of Bjerrum–ion aggregates, was deduced to occur in our crystals.Inert-gas host molecules were proposed as a possible origin of the two other spectra, having relaxation times shorter than the “Debye spectrum” and energies of 0.33 eV and 0.37 eV. Moreover the 0.33 eV spectrum, whose dielectric strength appears at a temperature below Tc, might alternatively be related to the cross-over of the “Debye spectrum”.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.