The advantages of 3D printing on cost, speed, accuracy, and flexibility have attracted several new applications in various industries especially in the field of medicine where customized solutions are highly demanded. Although this modern fabrication technique offers several benefits, it also poses critical challenges in materials development suitable for industry use. Proliferation of polymers in biomedical application has been severely limited by their inherently weak mechanical properties despite their other excellent attributes. Earlier works on 3D printing of polymers focus mainly on biocompatibility and cellular viability and lack a close attention to produce robust specimens. Prized for superior mechanical strength and inherent stiffness, cellulose nanocrystal (CNC) from abaca plant is incorporated to provide the necessary toughness for 3D printable biopolymer. Hence, this work demonstrates 3D printing of CNC-filled biomaterial with significant improvement in mechanical and surface properties. These findings may potentially pave the way for an alternative option in providing innovative and cost-effective patient-specific solutions to various fields in medical industry. To the best of our knowledge, this work presents the first successful demonstration of 3D printing of CNC nanocomposite hydrogel via stereolithography (SL) forming a complex architecture with enhanced material properties potentially suited for tissue engineering.
In this paper, we demonstrated for the first time the use of electrodeposited superhydrophobic conducting polythiophene coating to effectively protect the underlying steel substrate from corrosion attack: by first preventing water from being absorbed onto the coating, thus preventing the corrosive chemicals and corrosion products from diffusing through the coating, and second by causing an anodic shift in the corrosion potential as it galvanically couples to the metal substrate. Standard electrochemical measurements revealed the steel coated with antiwetting nanostructured polythiophene film, which was immersed in chloride solution of different pH and temperature for up to 7 days, is very well protected from corrosion evidenced by protection efficiency of greater than 95%. Fabrication of the dual properties superhydrophobic anticorrosion nanostructured conducting polymer coating follows a two-step coating procedure that is very simple and can be used to coat any metallic surface.
A 2 week field experiment investigated the hydrodynamics of a strongly tidally forced tropical intertidal reef platform in the Kimberley region of northwestern Australia, where the spring tidal range exceeds 8 m. At this site, the flat and wide (∼1.4 km) reef platform is located slightly above mean sea level, such that during low tide the offshore water level can fall 4 m below the platform. While the reef always remained submerged over each tidal cycle, there were dramatic asymmetries in both the water levels and velocities on the reef, i.e., the flood duration lasted only ∼2 h versus ∼10 h for the ebb. These dynamics were investigated using a one‐dimensional numerical model (SWASH) to solve the nonlinear shallow water equations with rapid (sub to supercritical) flow transitions. The numerical model revealed that as water drains off the reef, a critical flow point was established near the reef edge prior to the water discharging down the steep forereef. Despite this hydraulic control, bottom friction on the reef was still found to make a far greater contribution to elevating water levels on the reef platform and keeping it submerged over each tidal cycle. Finally, a simple analytical model more broadly shows how water levels on intertidal reef platforms functionally depend on properties of reef morphology, bottom roughness, and tidal conditions, revealing a set of parameters (a reef draining time‐scale and friction parameter) that can be used to quantify how the water depth will fall on a reef during ebb tide.
A finite volume model was built upon earlier work with the aim of simulating free surface flows, pressurized flows and their simultaneous occurrence (mixed flows) in single-liquid and two-phase flow conditions (entrapment and release of air pockets). The model presented herein is based on a two-governing equation model. Three main contributions are presented herein, namely: (1) the ability of the proposed model to simulate mixed flows without restriction of the flow type in the free surface region (e.g., supercritical flow), (2) extension of our single-phase flow model for simulating the entrapment and release of air pockets, and (3) formulation of an approach for handling numerical instabilities that may occur during numerical pressurization of the flow. The model presented herein is robust and simulates any transient-mixed flow condition for realistic pressure wave celerities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.