The growing market of herbal medicines, the increase in international trade in Latvia, and the lack of adequate analytical methods have raised the question of the potential use of herbal fingerprinting methods. In this study, high-performance liquid chromatography (HPLC) and thin layer chromatography (TLC) methods were developed for obtaining chromatographic fingerprints of four taxonomically and evolutionary different medicinal plants (Hibiscus sabdariffa L., Calendula officinalis L., Matricaria recutita L., Achillea millefolium L.). Retention time shifting, principal component analysis (PCA), hierarchical cluster analysis (HCA), and orthogonal projections to latent structures (OPLS) analysis were used to improve and analyze the obtained fingerprints. HPLC data detection at 270 nm was determined superior to 360 nm for the distinction of medicinal plants and used data alignment method significantly increased similarity between samples. Analyzed medicinal plant extracts formed separate, compact clusters in PCA, and the results of HCA correlated with the evolutionary relationships of the analyzed medicinal plants. Herbal fingerprinting using chromatographic analysis coupled with multivariate analysis has a great potential for the identification of medicinal plants as well as for the distinction of Latvian native medicinal plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.