Mobile robotic systems are highly relevant today in various fields, both in an industrial environment and in terms of their applications in medicine. After assembling the robot, components such as the camera and wheels need to be calibrated. This requires human participation and depends on human factors. The article describes the approach to fully automatic calibration of a robot鈥檚 camera and wheels with a subsequent calibration refinement during the operation. It consists of placing the robot in an inaccurate position, but in a pre-marked area, and using data from the camera, information about the environment configuration, as well as the ability to move, in order to perform calibration without external observers or human participation. There are two stages in this process: the camera and the wheel calibrations. The camera calibration collects the necessary set of images by automatically moving the robot in front of the fiducial markers template, and then moving it on the marked floor, assessing its trajectory curvature. Upon calibration completion, the robot automatically moves to the area of its normal operation and it is proposed to refine the calibration during its operation without blocking its work. The suggested approach was experimentally tested on the Duckietown project base. Based on test results, the approach proved to be comparable to manual calibrations and is capable of replacing a human for this task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.