Filled hybrid composites are widely used in various structural applications where machining is critical. Hence, it is essential to understand the performance of the fibre composites’ machining behaviour. As such, a new hybrid structural composite was fabricated with redmud as filler and sisal fibre as reinforcement in polyester matrix. The composite was then tested for its drilling performance. A comprehensive drilling experiment was conducted using Taguchi L27 orthogonal array. The effect of the drill tool point angle, the cutting speed, the feed rate on thrust force, delamination, and burr formation were analysed for producing quality holes. The significance of each parameter was analysed, and the experimental outcomes revealed some important findings in the context of the drilling behaviour of sisal fibre/polyester composites with redmud as a filler. Spindle speed contributed 39% in affecting the thrust force, while the feed rate had the maximum influence of ca. 38% in affecting delamination.
This review examines the mechanical performance of metal- and polymer-based composites fabricated using additive manufacturing (AM) techniques. Composite materials have significantly influenced various industries due to their exceptional reliability and effectiveness. As technology advances, new types of composite reinforcements, such as novel chemical-based and bio-based, and new fabrication techniques are utilized to develop high-performance composite materials. AM, a widely popular concept poised to shape the development of Industry 4.0, is also being utilized in the production of composite materials. Comparing AM-based manufacturing processes to traditional methods reveals significant variations in the performance of the resulting composites. The primary objective of this review is to offer a comprehensive understanding of metal- and polymer-based composites and their applications in diverse fields. Further on this review delves into the intricate details of metal- and polymer-based composites, shedding light on their mechanical performance and exploring the various industries and sectors where they find utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.