In natural circulation loops, the driving force is usually low as it depends on the riser height which is generally of the order of a few meters. The heat transport capability of natural circulation loops (NCLs) is directly proportional to the flow rate it can generate. With low driving force, the straightforward way to enhance the flow is to reduce the frictional losses. A simple way to do this is to increase the loop diameter which can be easily adopted in pressure tube designs such as the AHWR and the natural circulation boilers employed in fossil-fuelled power plants. Further, the loop diameter also plays an important role on the stability behavior. An extensive experimental and theoretical investigation of the effect of loop diameter on the steady state and stability behavior of single- and two-phase natural circulation loops have been carried out and the results of this study are presented in this paper.
Several decades have been spent on the study of flow instabilities in boiling two-phase natural circulation systems. It is felt to have a review and summarize the state-of-the-art research carried out in this area, which would be quite useful to the design and safety of current and future light water reactors with natural circulation core cooling. With that purpose, a review of flow instabilities in boiling natural circulation systems has been carried out. An attempt has been made to classify the instabilities occurring in natural circulation systems similar to that in forced convection boiling systems. The mechanism of instabilities occurring in two-phase natural circulation systems have been explained based on these classifications. The characteristics of different instabilities as well as the effects of different operating and geometric parameters on them have been reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.