SUMMARY The replicative machinery encounters many impediments, some of which can be overcome by lesion bypass or replication restart pathways, leaving repair for a later time. However, interstrand crosslinks (ICLs), which preclude DNA unwinding, are considered absolute blocks to replication. Current models suggest that fork collisions, either from one or both sides of an ICL, initiate repair processes required for resumption of replication. To test these proposals, we developed a single molecule technique for visualizing encounters of replication forks with ICLs, as they occur in living cells. Surprisingly, the most frequent patterns were consistent with replication traverse of an ICL, without lesion repair. The traverse frequency was strongly reduced by inactivation of the translocase and DNA binding activities of the FANCM/MHF complex. The results indicate that translocase-based mechanisms enable DNA synthesis to continue past ICLs, and that these lesions are not always absolute blocks to replication.
The realization of highly efficient photoinduced charge separation across the pi-stacked base pairs in duplex DNA remains elusive. The low efficiencies (<5%) typically observed for charge separation over a dozen or more base pairs are a consequence of slow charge transport and rapid charge recombination. We report here a significant (5-fold or greater) enhancement in the efficiency of charge separation in diblock purine oligomers consisting of two or three adenines followed by several guanines, when compared to oligomers consisting of a single purine or alternating base sequences. This approach to wire-like behavior is attributed to both slower charge recombination and faster charge transport once the charge reaches the G-block in these diblock systems.
We report the measurement of distance- and temperature-dependent rate constants for charge separation in capped hairpins in which a stilbene hole acceptor and hole donor are separated by A(3)G(n) diblock polypurine sequences consisting of 3 adenines and 1-19 guanines. The longer diblock systems obey the simplest model for an unbiased random walk, providing a direct measurement of k(hop) = 4.3 × 10(9) s(-1) for a single reversible G-to-G hole hopping step, somewhat faster than the value of 1.2 × 10(9) s(-1) calculated for A-tract hole hopping. The temperature dependence for hopping in A(3)G(13) provides values of E(act) = 2.8 kcal/mol and A = 7 × 10(9) s(-1), consistent with a weakly activated, conformationally gated process.
Interstrand cross-links (ICLs) are absolute blocks to transcription and replication and can provoke genomic instability and cell death. Studies in bacteria define a two-stage repair scheme, the first involving recognition and incision on either side of the cross-link on one strand (unhooking), followed by recombinational repair or lesion bypass synthesis. The resultant monoadduct is removed in a second stage by nucleotide excision repair. In mammalian cells, there are multiple, but poorly defined, pathways, with much current attention on repair in S phase. However, many questions remain, including the efficiency of repair in the absence of replication, the factors involved in cross-link recognition, and the timing and demarcation of the first and second repair cycles. We have followed the repair of laser-localized lesions formed by psoralen (cross-links/ monoadducts) and angelicin (only monoadducts) in mammalian cells. Both were repaired in G 1 phase by nucleotide excision repair-dependent pathways. Removal of psoralen adducts was blocked in XPC-deficient cells but occurred with wild type kinetics in cells deficient in DDB2 protein (XPE). XPC protein was rapidly recruited to psoralen adducts. However, accumulation of DDB2 was slow and XPC-dependent. Inhibition of repair DNA synthesis did not interfere with DDB2 recruitment to angelicin but eliminated recruitment to psoralen. Our results demonstrate an efficient ICL repair pathway in G 1 phase cells dependent on XPC, with entry of DDB2 only after repair synthesis that completes the first repair cycle. DDB2 accumulation at sites of cross-link repair is a marker for the start of the second repair cycle. Interstrand cross-links (ICLs)2 are among the most dangerous DNA lesions. They are absolute blocks to replication and transcription and, unlike monoadducts, cannot be carried through a proliferative cycle. Their accumulation over time is believed to contribute to genomic instability and aging in tissues and organs (1, 2). If not removed, they can provoke chromosomal breakage, rearrangements, or cell death (3, 4). Mice and humans deficient in genes associated with ICL repair, such as members of the ERCC1-XPF complex, display severe pathology and greatly reduced life span (2, 5-9). Given the challenge of repairing lesions that engage both strands of the duplex, it is understandable that multiple repair pathways are engaged (10 -12) and that repair is more complex than for monoadducts.In Escherichia coli, the NER apparatus incises one strand on either side of the ICL. This produces an "unhooked" substrate with the excised fragment still attached to the non-incised strand by the cross-linking agent. The immediate product of unhooking is typically depicted as a gapped structure with the cross-linked oligonucleotide flipped out of the duplex (although this structure may not actually form (13)). The incised/gapped strand is repaired by homology-directed repair using information from an undamaged homologous chromosome (14 -17). The gap may also be filled by lesion bypass sy...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.