luminescent nanoparticles with a scalable guest loading has been fabricated and characterized. The successful encapsulation of the organic dye (fluorescein) is supported by both experimental evidence and theoretical simulations. The measured optical band gap is found to be comparable with the computed values of a hypothetical guest−host system. Isolated monomers and aggregate species of fluorescein confined in ZIF-8 nanocrystals have been systematically investigated through fluorescence lifetime spectroscopy. The quantum yield (QY) of the obtained solid-state materials is particularly high (QY ∼ 98%), especially when the concentration of the fluorescein guest is low. Combining a blue LED chip and a thin photoactive film of fluorescein@ZIF-8, we demonstrate a device with good optical tunability for multicolor and white light emissions. Additionally, we show that the fluorescein@ZIF-8 nanoparticles exhibit an improved photostability due to the shielding effect conferred by the nanoconfinement of the host framework, making them promising candidates for practical applications such as solidstate lighting, photonics, and optical communications.
Nanocomposites comprising metal-organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.
a High performance multiwall carbon nanotube (MWCNT) reinforced polycarbonate (PC) composites were prepared using an industrially viable fast dispersion process by a micro twin screw extruder with back flow channel and their mechanical and electrical properties were investigated for EMI shielding applications. A uniformly dispersed MWCNT/PC composite system was observed through SEM and TEM investigations. Incorporation of a small amount of MWCNT (2 wt%) led to enhancements in the tensile strength (up to 79.6 MPa) and flexural strength (up to 110 MPa), which were equivalent to 19.6% and 14.6% increases over the neat PC. The effect of MWCNTs on the failure mechanism of the PC under tensile loading showed a ductile to brittle transition with increasing concentration of MWCNTs. The results of enhanced mechanical properties were well supported by micro Raman spectroscopic studies. In addition to the mechanical properties, significant improvement in the electrical conductivity (0.01 S cm À1 at 10 wt% MWCNT) of these composites was observed which yielded the EMI shielding of À27.2 dB in the Ku band suggesting their possible use as a high strength EMI shielding material.
Functionalized multiwalled carbon nanotubes (a-MWCNTs) and non-functionalized MWCNTs were melt mixed with polycarbonate polymer by utilizing twin screw micro compounder having a back flow channel to obtain nanocomposites with varying composition from 0.5 to 10 wt% MWCNT and 2 wt% a-MWCNT. Mechanical properties of composite samples were studied using dynamic mechanical analyzer, flexural and tensile tests. Both DMA and flexural and tensile tests suggest formation of continuous network of CNT-polymer that is supported by measured storage modulus for different loading of MWCNT and a-MWCNT. The composite sample showed lower glass transition temperature (T g ) as compared to pure PC. Effect of functionalization of MWCNTs on T g of its of polycarbonate composites is studied and showed higher T g depression in functionalized MWCNTs compared to non functionalized MWCNTs based composites over pure polycarbonate. In DMA, lowering of height of tan delta peak indicates that polymer in composite material participating in T g was reduced along with loading of MWCNT, consistent with immobilization of polymer material present at the CNT interface.Effect of functionalization on morphology was investigated using scanning electron microscope and confirms the better interaction in case of a-MWCNTs compare to MWCNTs based composites. Further, Raman spectroscopic analysis indicates higher interaction between a-MWCNT and PC matrix as compared to as synthesized MWCNT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.