In this paper, we describe how the pathfinder algorithm converts relatedness ratings of concept pairs to concept maps; we also present how this algorithm has been used to develop the Concept Maps for Learning website (www.conceptmapsforlearning.com) based on the principles of effective formative assessment. The pathfinder networks, one of the network representation tools, claim to help more students memorize and recall the relations between concepts than spatial representation tools (such as MultiDimensional Scaling). Therefore, the pathfinder networks have been used in various studies on knowledge structures, including identifying students' misconceptions. To accomplish this, each student's knowledge map and the expert knowledge map are compared via the pathfinder software, and the differences between these maps are highlighted. After misconceptions are identified, the pathfinder software fails to provide any feedback on these misconceptions. To overcome this weakness, we have been developing a mobile-based concept mapping tool providing visual, textual and remedial feedback (ex. videos, website links and applets) on the concept relations. This information is then placed on the expert concept map, but not on the student's concept map. Additionally, students are asked to note what they understand from given feedback, and given the opportunity to revise their knowledge maps after receiving various types of feedback. ResumenEn este artículo se describe cómo el algoritmo de búsqueda de ruta convierte puntajes de conceptos pareados en mapas conceptuales. También se presenta cómo este algoritmo ha sido utilizado para desarrollar estos mapas conceptuales para aprendizaje (www.conceptmapsforlearning.com) basados en los principios del aseguramiento formativo efectivo.Las redes de búsqueda de ruta, una de las herramientas de representación de redes, ayudan a memorizar a los estudiantes y enunciar las relaciones entre mapas más que las herramientas de expresión espacial (tales como el escalonamiento multidimensional). Por tanto, las redes de búsqueda de rutas han sido usadas en varios estudios de estructura del conocimiento incluyendo la identificación de malos conceptos usados por los estudiantes. Para lograr esto, cada mapa de conocimiento tanto del estudiante como del experto son comparados vía el software de búsqueda de ruta y se remarcan las diferencias entre éstos. Después que los malos conceptos son identificados, el software de búsqueda falla en entregar una retroalimentación en estos nodos conceptuales. Para superar esta debilidad, se desarrolla una herramienta de mapa conceptual móvil que manda retroalimentaciones visuales, textuales y remediales (e.g. vídeos, enlaces a páginas web y applets) en las relaciones de los conceptos. Adicionalmente, los estudiantes son preguntados acerca de qué entienden de la retroalimentación brindada y se les da la oportunidad de revisar sus mapas de conocimiento después de recibir varios tipos de retroalimentación.Palabras clave: aseguramiento estructural, mapas conceptua...
The purpose of this paper is to examine the promising contributions of the Concept Maps for Learning (CMfL) website to assessment for learning practices. The CMfL website generates concept maps from relatedness degree of concepts pairs through the Pathfinder Scaling Algorithm. This website also confirms the established principles of effective assessment for learning, for it is capable of automatically assessing students’ higher order knowledge, simultaneously identifying strengths and weaknesses, immediately providing useful feedback and being user-friendly. According to the default assessment plan, students first create concept maps on a particular subject and then they are given individualized visual feedback followed by associated instructional material (e.g., videos, website links, examples, problems, etc.) based on a comparison of their concept map and a subject matter expert’s map. After studying the feedback and instructional material, teachers can monitor their students’ progress by having them create revised concept maps. Therefore, we claim that the CMfL website may reduce the workload of teachers as well as provide immediate and delayed feedback on the weaknesses of students in different forms such as graphical and multimedia. For the following study, we will examine whether these promising contributions to assessment for learning are valid in a variety of subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.