Lead aprons are widely used in medical imaging to protect radiographers and patients from harmful radiation. However, lead is not a desirable material for use in wearable radiation protection due to its heavy weight, inflexibility, poor durability, and toxicity. In this study, we explored the suitability of bismuth oxide (Bi2O3) coating for textiles as an alternative to lead. The intention was to demonstrate the concept and technology that will achieve a lead-equivalent lightweight X-ray protective textile material with improved wearability. The primary objective was to evaluate the X-ray shielding efficiency of two textile materials coated with Bi2O3. To do so, X-ray exposures were made at the system setting of 80 kVp, 12 mAs, and 80 SID (the distance from the X-ray beam source to the specimen). It is evident from this study that Bi2O3 in a suitable resin matrix can be coated on fabrics and is an effective method to produce flexible, wearable, and lead-free aprons. Coated polyester fabrics with over 50% Bi2O3 showed enhanced shielding ability for transmitted X-rays. This research has shown that microparticle size Bi2O3 can be effective for X-ray attenuation.
This research investigated the effect of repeated laundering and dry-cleaning on the physical and thermophysiological comfort properties such as air permeability, water vapour resistance and thermal resistance of fabrics made of meta-aramid (Nomex ® ) fibre. Two different types of fabric were selected for the study and subjected to repeated laundering and dry-cleaning (1, 5 and 10 cycles), which is commercially used for the care and maintenance of these fabrics. The fabric thickness, areal density, thermal resistance and water vapour resistance values increased with the number of laundering cycles, whereas the air permeability decreased due to the fabric shrinkage and swelling. On the other hand, the thickness and air permeability of the dry-cleaned fabric samples increased with the number of cycles; while the water vapour resistance and thermal resistance decreased. The scanning electron microscopy images showed the structural changes as indicated by the longitudinal fibrillation in the fabrics subjected to laundering or dry-cleaning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.