We seek a measure of the neutron density of 208 Pb from analyses of intermediate energy nucleon elastic scattering. The pertinent model for such analyses is based on coordinate space nonlocal optical potentials obtained from model nuclear ground state densities. Those potentials give predictions of integral observables and of angular distributions which show sensitivity to the neutron density. When compared with experiment, and correlated with analyses of electron scattering data, the results suggest that 208 Pb has a neutron skin thickness ∼ 0.17 fm.
Lead aprons are widely used in medical imaging to protect radiographers and patients from harmful radiation. However, lead is not a desirable material for use in wearable radiation protection due to its heavy weight, inflexibility, poor durability, and toxicity. In this study, we explored the suitability of bismuth oxide (Bi2O3) coating for textiles as an alternative to lead. The intention was to demonstrate the concept and technology that will achieve a lead-equivalent lightweight X-ray protective textile material with improved wearability. The primary objective was to evaluate the X-ray shielding efficiency of two textile materials coated with Bi2O3. To do so, X-ray exposures were made at the system setting of 80 kVp, 12 mAs, and 80 SID (the distance from the X-ray beam source to the specimen). It is evident from this study that Bi2O3 in a suitable resin matrix can be coated on fabrics and is an effective method to produce flexible, wearable, and lead-free aprons. Coated polyester fabrics with over 50% Bi2O3 showed enhanced shielding ability for transmitted X-rays. This research has shown that microparticle size Bi2O3 can be effective for X-ray attenuation.
This article is intended to provide an overview of the production and application of 89 Zr for the professional development of nuclear medicine technologists. It outlines the cyclotron targeting, separation and labeling options, and techniques for the preparation of the radionuclide 89 78.4 h [3.3 d]) used in PET. Unlike the commonly used 18 F-FDG, with a 109.7-min half-life, the longer half-life of 89 Zr makes it possible to use highresolution PET/CT to localize and image tumors with monoclonal antibody radiopharmaceuticals and thus potentially expand the use of PET. Methods: This paper briefly reviews the cyclotron technique of 89 Zr production and outlines the range and preparation techniques available for making 89 Y targets as a starting material. It then discusses how cyclotron-produced 89 Zr can be separated, purified, and labeled to monoclonal antibodies for PET/CT of specific tumors. Results: We argue that knowledge and understanding of this long-lived PET radionuclide should be part of the professional development of nuclear medicine technologists because it will lead to better patient outcomes and potentially increase the pool of collaborators in this field of research.
Nucleon total reaction and neutron total cross sections to 300 MeV for 12C and 208Pb, and for 65 MeV scattering spanning the mass range, are predicted using coordinate space optical potentials formed by full folding of effective nucleon-nucleon interactions with realistic nuclear ground state densities. Good to excellent agreement is found with existing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.