Ground surveillance is normally performed by human assets, since it requires visual intelligence. However, especially for military operations, this can be dangerous and is very resource intensive. Therefore, unmanned autonomous visualintelligence systems are desired. In this paper, we present an improved system that can recognize actions of a human and interactions between multiple humans. Central to the new system is our agent-based architecture. The system is trained on thousands of videos and evaluated on realistic persistent surveillance data in the DARPA Mind's Eye program, with hours of videos of challenging scenes. The results show that our system is able to track the people, detect and localize events, and discriminate between different behaviors, and it performs 3.4 times better than our previous system.
Many threats in the real world can be related to activity of persons on the internet. Internet surveillance aims to predict and prevent attacks and to assist in finding suspects based on information from the web. However, the amount of data on the internet rapidly increases and it is time consuming to monitor many websites. In this paper, we present a novel method to automatically monitor trends and find anomalies on the internet. The system was tested on Twitter data. The results showed that it can successfully recognize abnormal changes in activity or emotion.
Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous behavior in videos from DARPA's Mind's Eye program, containing a variety of human activities. In this semi-unsupervised task a set of normal instances is provided for training, after which unknown abnormal behavior has to be detected in a test set. The features extracted from the video data have high dimensionality, are sparse and inhomogeneously distributed in the feature space making it a challenging task. Given these characteristics a distance-based method is preferred, but choosing a threshold to classify instances as (ab)normal is non-trivial. Our novel aproach, the Adaptive Outlier Distance (AOD) is able to detect outliers in these conditions based on local distance ratios. The underlying assumption is that the local maximum distance between labeled examples is a good indicator of the variation in that neighborhood, and therefore a local threshold will result in more robust outlier detection. We compare our method to existing state-of-art methods such as the Local Outlier Factor (LOF) and the Local Distance-based Outlier Factor (LDOF). The results of the experiments show that our novel approach improves the quality of the anomaly detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.