Automated interpretation of complex images requires elaborate knowledge and model-based image analysis, but often needs interaction with an expert as well. This research describes expert interaction with a multiagent image interpretation system using only a restricted vocabulary of high-level user interactions. The aim is to minimize inter- and intra-observer variability by keeping the total number of interactions as low and simple as possible. The multiagent image interpretation system has elaborate high-level knowledge-based control over low-level image segmentation algorithms. Agents use contextual knowledge to keep the number of interactions low but, when in doubt, present the user with the most likely interpretation of the situation. The user, in turn, can correct, supplement, and/or confirm the results of image-processing agents. This is done at a very high level of abstraction such that no knowledge of the underlying segmentation methods, parameters or agent functioning is needed. High-level interaction thereby replaces more traditional contour correction methods like inserting points and/or (re)drawing contours. This makes it easier for the user to obtain good results, while inter- and intra-observer variability are kept minimal, since the image segmentation itself remains under control of image-processing agents. The system has been applied to intravascular ultrasound (IVUS) images. Experiments show that with an average of 2-3 high-level user interactions per correction, segmentation results substantially improve while the variation is greatly reduced. The achieved level of accuracy and repeatability is equivalent to that of manual drawing by an expert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.