This review summarises the research work carried out in the field of carbon nanotube (CNT) metal matrix composites (MMCs). Much research has been undertaken in utilising CNTs as reinforcement for composite material. However, CNT-reinforced MMCs have received the least attention. These composites are being projected for use in structural applications for their high specific strength as well as functional materials for their exciting thermal and electrical characteristics. The present review focuses on the critical issues of CNT-reinforced MMCs that include processing techniques, nanotube dispersion, interface, strengthening mechanisms and mechanical properties. Processing techniques used for synthesis of the composites have been critically reviewed with an objective to achieve homogeneous distribution of carbon nanotubes in the matrix. The mechanical property improvements achieved by addition of CNTs in various metal matrix systems are summarised. The factors determining strengthening achieved by CNT reinforcement are elucidated as are the structural and chemical stability of CNTs in different metal matrixes and the importance of the CNT/metal interface has been reviewed. The importance of CNT dispersion and its quantification is highlighted. Carbon nanotube reinforced MMCs as functional materials are summarised. Future work that needs attention is addressed.
This review critically examines the current state of graphene reinforced metal (GNP-MMC) and ceramic matrix composites (GNP-CMC). The use of graphene as reinforcement for structural materials is motivated by their exceptional mechanical/functional properties and their unique physical/chemical characteristics. This review focuses on MMCs and CMCs because of their technological importance for structural applications and the unique challenges associated with developing high-temperature composites with nanoparticle reinforcements. The review discusses processing techniques, effects of graphene on the mechanical behaviour of GNP-MMCs and GNP-CMCs, including early studies on the tribological performance of graphenereinforced composites, where graphene has shown signs of serving as a protective and lubricious phase. Additionally, the unique functional properties endowed by graphene to GNP-MMCs and GNP-CMCs, such as enhanced thermal/electrical conductivity, improved oxidation resistance, and excellent biocompatibility are overviewed. Directions for future research endeavours that are needed to advance the field and to propel technological maturation are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.