The above results provide functional and molecular evidence for the existence of a carrier-mediated mechanism in the transport of SP across the BBB. The effects of specific inhibitors and the results of Western blot analyses demonstrate the involvement of the NK-1 receptor in the transport of SP across the BBB.
Computer modeling and simulations using a meta-model built from data extracted from publications suggest that rapid and straightforward conversion from transdermal to buccal buprenorphine is feasible.
Substance P (SP) has been associated with pain and depression as well as neurodegenerative diseases. Many of these diverse actions of SP can potentially be attributed to SP metabolites generated at the blood-brain barrier (BBB). In this study, the metabolism of SP was investigated using an in vitro model of the BBB and LC-MS/MS. Substance P metabolism was found to be non-saturable in the concentration range of 100 nM to 10 M, with approximately 70% of the peptide remaining intact after 5 h. The major metabolites of SP were identified by MS as 3-11 and 5-11. Two previously unreported metabolites, 5-11 and 6-11, were also found in our studies. Several additional minor SP metabolites, including 1-9 and 2-11, were also identified. A profile of the SP metabolites generated by the BBB over time was obtained. The results from the present study provide us a better understanding of the role of the blood-brain barrier in the pharmacology of SP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.