Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus ‘metabolic reconstruction’, which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.
Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can be used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters.
Systems analyses have facilitated the characterization of metabolic networks of several organisms. We have reconstructed the metabolic network of Leishmania major, a poorly characterized organism that causes cutaneous leishmaniasis in mammalian hosts. This network reconstruction accounts for 560 genes, 1112 reactions, 1101 metabolites and 8 unique subcellular localizations. Using a systemsbased approach, we hypothesized a comprehensive set of lethal single and double gene deletions, some of which were validated using published data with approximately 70% accuracy. Additionally, we generated hypothetical annotations to dozens of previously uncharacterized genes in the L. major genome and proposed a minimal medium for growth. We further demonstrated the utility of a network reconstruction with two proof-of-concept examples that yielded insight into robustness of the network in the presence of enzymatic inhibitors and delineation of promastigote/amastigote stage-specific metabolism. This reconstruction and the associated network analyses of L. major is the first of its kind for a protozoan. It can serve as a tool for clarifying discrepancies between data sources, generating hypotheses that can be experimentally validated and identifying ideal therapeutic targets.
SUMMARY Noisy gene expression generates diverse phenotypes, but little is known about mechanisms that modulate noise. Combining experiments and modeling, we studied how tumor necrosis factor (TNF) initiates noisy expression of latent HIV via the transcription factor nuclear factor κB (NF-κB) and how the HIV genomic integration site modulates noise to generate divergent (low-versus-high) phenotypes of viral activation. We show that TNF-induced transcriptional noise varies more than mean transcript number and that amplification of this noise explains low-versus-high viral activation. For a given integration site, live-cell imaging shows that NF-κB activation correlates with viral activation, but across integration sites, NF-κB activation cannot account for differences in transcriptional noise and phenotypes. Instead, differences in transcriptional noise are associated with differences in chromatin state and RNA polymerase II regulation. We conclude that, whereas NF-κB regulates transcript abundance in each cell, the chromatin environment modulates noise in the population to support diverse HIV activation in response to TNF.
An increasing number of genome-scale reconstructions of intracellular biochemical networks are being generated. Coupled with these stoichiometric models, several systems-based approaches for probing these reconstructions in silico have been developed. One such approach, called flux balance analysis (FBA), has been effective at predicting systemic phenotypes in the form of fluxes through a reaction network. FBA employs a linear programming (LP) strategy to generate a flux distribution that is optimized toward a particular 'objective,' subject to a set of underlying physicochemical and thermodynamic constraints. Although classical FBA assumes steady-state conditions, several extensions have been proposed in recent years to constrain the allowable flux distributions and enable characterization of dynamic profiles even with minimal kinetic information. Furthermore, FBA coupled with techniques for measuring fluxes in vivo has facilitated integration of computational and experimental approaches, and is allowing pursuit of rational hypothesis-driven research. Ultimately, as we will describe in this review, studying intracellular reaction fluxes allows us to understand network structure and function and has broad applications ranging from metabolic engineering to drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.