IntroductionEpratuzumab, a humanized anti-CD22 monoclonal antibody, is under investigation as a therapeutic antibody in non-Hodgkin's lymphoma and systemic lupus erythematosus (SLE), but its mechanism of action on B-cells remains elusive. Treatment of SLE patients with epratuzumab leads to a reduction of circulating CD27negative B-cells, although epratuzumab is weakly cytotoxic to B-cells in vitro. Therefore, potential effects of epratuzumab on adhesion molecule expression and the migration of B-cells have been evaluated.MethodsEpratuzumab binding specificity and the surface expression of adhesion molecules (CD62L, β7 integrin and β1 integrin) after culture with epratuzumab was studied on B-cell subsets of SLE patients by flow cytometry. In addition, in vitro transwell migration assays were performed to analyze the effects of epratuzumab on migration towards different chemokines such as CXCL12, CXCL13 or to CXCR3 ligands, and to assess the functional consequences of altered adhesion molecule expression.ResultsEpratuzumab binding was considerably higher on B-cells relative to other cell types assessed. No binding of epratuzumab was observed on T-cells, while weak non-specific binding of epratuzumab on monocytes was noted. On B-cells, binding of epratuzumab was particularly enhanced on CD27negative B-cells compared to CD27positive B-cells, primarily related to a higher expression of CD22 on CD27negative B-cells. Moreover, epratuzumab binding led to a decrease in the cell surface expression of CD62L and β7 integrin, while the expression of β1 integrin was enhanced. The effects on the pattern of adhesion molecule expression observed with epratuzumab were principally confined to a fraction of the CD27negative B-cell subpopulation and were associated with enhanced spontaneous migration of B-cells. Furthermore, epratuzumab also enhanced the migration of CD27negative B-cells towards the chemokine CXCL12.ConclusionsThe current data suggest that epratuzumab has effects on the expression of the adhesion molecules CD62L, β7 integrin and β1 integrin as well as on migration towards CXCL12, primarily of CD27negative B-cells. Therefore, induced changes in migration appear to be part of the mechanism of action of epratuzumab and are consistent with the observation that CD27negative B-cells were found to be preferentially reduced in the peripheral blood under treatment.
Post-traumatic disc degeneration with consecutive loss of reduction and kyphosis remains a debatable issue within both the operative and nonoperative treatment regimen of thoracolumbar spine fractures. Intervertebral disc (IVD) cell apoptosis has been suggested to play a vital role in promoting the degeneration process. To evaluate and compare apoptosis-regulating signaling mechanisms, IVDs were obtained from patients with thoracolumbar spine fractures (n ¼ 21), patients suffering from symptomatic IVD degeneration (n ¼ 6), and from patients undergoing surgical resection of a primary vertebral tumor (n ¼ 3 used as control samples). All tissues were prospectively analyzed in regards to caspase-3/7, -8, and -9 activity, apoptosis-receptor expression levels, and gene expression of the mitochondria-bound apoptosisregulating proteins Bax and Bcl-2. Morphologic changes characteristic for apoptotic cell death were confirmed by H&E staining. Statistical significance was designated at p < 0.05 using the Student's t-test. Both traumatic and degenerative IVD demonstrated a significant increase of caspase-3/7 activity with evident apoptosis. Although caspase-3/7 activation was significantly greater in degenerated discs, both showed equally significant activation of the initiator caspases 8 and 9. Traumatic IVD alone demonstrated a significant increase of the Fas receptor (FasR), whereas the TNF receptor I (TNFR I) was equally up-regulated in both morbid IVD groups. Only traumatic IVD showed distinct changes in up-regulated TNF expression, in addition to significantly down-regulated antiapoptotic Bcl-2 protein. Our results suggest that post-traumatic disc changes may be promoted and amplified by both the intrinsic mitochondria-mediated and extrinsic receptor-mediated apoptosis signaling pathways, which could be, in part, one possible explanation for developing subsequent disc degeneration. ß
Background: Vertebral fractures resulting from high energy trauma often comprise the risk of posttraumatic degenerative changes in the affected intervertebral discs (IVD). Particularly in conservatively treated patients, or in cases after implant removal of an exclusively posterior stabilization, consecutive disc degeneration and the associated functional losing of the spinal segment clearly represent detrimental treatment results. In this regard, apoptosis of IVD cells has been suggested to be involved in the critical changes of the extracellular matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.