Singlet fission is an exciton multiplication process in organic molecules in which a photogenerated spin-singlet exciton is rapidly and efficiently converted to two spin-triplet excitons. This process offers a mechanism to break the Shockley−Queisser limit by overcoming the thermalization losses inherent to all single-junction photovoltaics. One of the most promising methods to harness the singlet fission process is via the efficient extraction of the dark triplet excitons into quantum dots (QDs) where they can recombine radiatively, thereby converting high-energy photons to pairs of low-energy photons, which can then be captured in traditional inorganic PVs such as Si. Such a singlet fission photon multiplication (SF-PM) process could increase the efficiency of the best Si cells from 26.7% to 32.5%, breaking the Shockley−Queisser limit. However, there has been no demonstration of such a singlet fission photon multiplication (SF-PM) process in a bulk system to date. Here, we demonstrate a solution-based bulk SF-PM system based on the singlet fission material TIPS-Tc combined with PbS QDs. Using a range of steady-state and timeresolved measurements combined with analytical modeling we study the dynamics and mechanism of the triplet harvesting process. We show that the system absorbs >95% of incident photons within the singlet fission material to form singlet excitons, which then undergo efficient singlet fission in the solution phase (135 ± 5%) before quantitative harvesting of the triplet excitons (95 ± 5%) via a low concentration of QD acceptors, followed by the emission of IR photons. We find that in order to achieve efficient triplet harvesting it is critical to engineer the surface of the QD with a triplet transfer ligand and that bimolecular decay of triplets is potentially a major loss pathway which can be controlled via tuning the concentration of QD acceptors. We demonstrate that the photon multiplication efficiency is maintained up to solar fluence. Our results establish the solution-based SF-PM system as a simple and highly tunable platform to understand the dynamics of a triplet energy transfer process between organic semiconductors and QDs, one that can provide clear design rules for new materials.
Singlet fission is the spin-allowed conversion of a photogenerated singlet exciton into two triplet excitons in organic semiconductors, which could enable single-junction photovoltaic cells to break the Shockley-Queisser limit. The conversion of singlets to free triplets is mediated by an intermediate correlated triplet pair (TT) state, but an understanding of how the formation and dissociation of these states depend on energetics and morphology is lacking. In this study, we probe the dynamics of TT states in a model endothermic fission system, TIPS-Tc nanoparticles, which show a mixture of crystalline and disordered regions. We observe the formation of different TT states, with varying yield and different rates of singlet decay, depending on the excitation energy. An emissive TT state is observed to grow in over 1 ns when excited at 480 nm, in contrast to excitation at lower energies where this emissive TT state is not observed. This suggests that the pathway for singlet fission in these nanoparticles is strongly influenced by the initial sub-100 fs relaxation of the photoexcited state away from the Franck-Condon point, with multiple possible TT states. On nanosecond time scales, the TT states are converted to free triplets, which suggests that TT states might diffuse into the disordered regions of the nanoparticles where their breakup to free triplets is favored. The free triplets then decay on μs time scales, despite the confined nature of the system. Our results provide important insights into the mechanism of endothermic singlet fission and the design of nanostructures to harness singlet fission.
Ultrafast vibrational spectroscopy is employed to obtain real-time structural information on energy transport in double-walled light-harvesting nanotubes at room temperature, stabilized in a host matrix to mimic the rigid scaffolds of natural light-harvesting systems. We observe evidence of a low-frequency vibrational mode at 315 cm, which transfers excitons from the outer wall of the nanotubes to a crossing point through which energy transfer to the inner wall can occur. This mode is furthermore absent in solution phase. Importantly, the coherence of this mode is not transferred to the inner wall upon energy transfer and is only present on the outer wall's excited-state energy surface, highlighting that complete energy transfer between the outer and inner walls does not take place. Isolation of the individual walls of the nanotubes provides evidence that this mode corresponds to a supramolecular motion of the nanotubes. Our results emphasize the importance of the solid-state environment in modulating vibronic coupling and directing energy transfer in molecular light-harvesting systems.
Melanin is an abundant biopigment in the animal kingdom, but its structure remains poorly understood. This is a substantial impediment to understanding the mechanistic origin of its observed functions. Proposed models of melanin structure include aggregates of both linear and macrocyclic units and noncovalently held monomers. Both models are broadly in agreement with current experimental data. To constrain the structural and kinetic models of melanin, experimental data of high resolution with chemical specificity accompanied by atomistic modeling are required. We have addressed this by obtaining electronic absorption, infrared, and ultraviolet resonance Raman (RR) spectra of melanin at several wavelengths of excitation that are sensitive to small changes in structure. From these experiments, we observed kinetics of the formation of different species en route to melanin polymerization. Exclusive chemical signatures of monomer 3,4-dihydroxyphenylalanine (dopa), intermediate dopachrome (DC), and early-time polymer are established through their vibrational bands at 1292, 1670, and 1616 cm respectively. Direct evidence of reduced heterogeneity of melanin oligomers in tyrosinase-induced formation is provided from experimental measurements of vibrational bandwidths. Models made with density functional theory show that the linear homopolymeric structures of 5,6-dihydroxyindole can account for experimentally observed wavenumbers and broad bandwidth in Raman spectra of dopa-melanin. We capture resonance Raman (RR) signature of DC, the intermediate stabilized by the enzyme tyrosinase, for the first time in an enzyme-assisted melanization reaction using 488 nm excitation wavelength and propose that this wavelength can be used to probe reaction intermediates of melanin formation in solution.
Introduction: There is limited information on the effectiveness of COVID-19 vaccination in patients with autoimmune rheumatic diseases (AIRD). Methods: 136 consecutive patients with rheumatic diseases who never had a diagnosis of COVID-19 previously, and had completed vaccination with either the ChAdOx1 or BBV152 vaccines were recruited. Their IgG antibody titres to the Spike protein were estimated 1 month after the second dose. Results: 102 patients had AIRD while the 34 had non-AIRD. Lesser patients with AIRD (92/102) had positive antibodies titres than ones with non-AIRD(33/34) [p<0.001]. Amongst patients who received the ChAdOX1 vaccine, the AIRD group had lower antibody titres. Although the AIRD patients receiving BBV152 had similarly lower titres numerically, this did not attain statistical significance probably due to lesser numbers. Comparing the two vaccines, 114(95%) of those who received ChAdOx1 (n=120) and 11(68.7%) of those who received BBV152(n=16) had detectable antibodies [p=0.004] . Antibody titres also were higher in ChAdOx1 recipients when compared to BBV152. To validate the findings, we estimated antibody titres in 30 healthy people each who had received either vaccine. All 30 who had received ChAdOX1 and only 23/30 of those who had received BBV152 had positive antibodies (p=0.011). Conclusion: In this preliminary analysis, patients with AIRD had lower seroconversion rates as well as lower antibody titres as compared to patients with non-AIRD. Also,the humoral immunogenicity of the BBV152 vaccine appears to be less than that of the ChAdOX1 vaccine. Validation using larger numbers and testing of cellular immunity is urgently required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.