Singlet fission, the process of forming two triplet excitons from one singlet exciton, is a characteristic reserved for only a handful of organic molecules due to the atypical energetic requirement for low energy excited triplet states. The predominant strategy for achieving such a trait is by increasing ground state diradical character; however, this greatly reduces ambient stability. Herein, we exploit Baird's rule of excited state aromaticity to manipulate the singlet−triplet energy gap and create novel singlet fission candidates. We achieve this through the inclusion of a [4n] 5-membered heterocycle, whose electronic resonance promotes aromaticity in the triplet state, stabilizing its energy relative to the singlet excited state. Using this theory, we design a family of derivatives of indolonaphthyridine thiophene (INDT) with highly tunable excited state energies. Not only do we access novel singlet fission materials, they also exhibit excellent ambient stability, imparted due to the delocalized nature of the triplet excited state. Spin-coated films retained up to 85% activity after several weeks of exposure to oxygen and light, while analogous films of TIPS-pentacene showed full degradation after 4 days, showcasing the excellent stability of this class of singlet fission scaffold. Extension of our theoretical analysis to almost ten thousand candidates reveals an unprecedented degree of tunability and several thousand potential fission-capable candidates, while clearly demonstrating the relationship between triplet aromaticity and singlet−triplet energy gap, confirming this novel strategy for manipulating the exchange energy in organic materials.
Singlet fission is an exciton multiplication process in organic molecules in which a photogenerated spin-singlet exciton is rapidly and efficiently converted to two spin-triplet excitons. This process offers a mechanism to break the Shockley−Queisser limit by overcoming the thermalization losses inherent to all single-junction photovoltaics. One of the most promising methods to harness the singlet fission process is via the efficient extraction of the dark triplet excitons into quantum dots (QDs) where they can recombine radiatively, thereby converting high-energy photons to pairs of low-energy photons, which can then be captured in traditional inorganic PVs such as Si. Such a singlet fission photon multiplication (SF-PM) process could increase the efficiency of the best Si cells from 26.7% to 32.5%, breaking the Shockley−Queisser limit. However, there has been no demonstration of such a singlet fission photon multiplication (SF-PM) process in a bulk system to date. Here, we demonstrate a solution-based bulk SF-PM system based on the singlet fission material TIPS-Tc combined with PbS QDs. Using a range of steady-state and timeresolved measurements combined with analytical modeling we study the dynamics and mechanism of the triplet harvesting process. We show that the system absorbs >95% of incident photons within the singlet fission material to form singlet excitons, which then undergo efficient singlet fission in the solution phase (135 ± 5%) before quantitative harvesting of the triplet excitons (95 ± 5%) via a low concentration of QD acceptors, followed by the emission of IR photons. We find that in order to achieve efficient triplet harvesting it is critical to engineer the surface of the QD with a triplet transfer ligand and that bimolecular decay of triplets is potentially a major loss pathway which can be controlled via tuning the concentration of QD acceptors. We demonstrate that the photon multiplication efficiency is maintained up to solar fluence. Our results establish the solution-based SF-PM system as a simple and highly tunable platform to understand the dynamics of a triplet energy transfer process between organic semiconductors and QDs, one that can provide clear design rules for new materials.
Hybrid inorganic–organic materials such as quantum dots (QDs) coupled with organic semiconductors have a wide range of optoelectronic applications, taking advantage of the respective materials’ strengths. A key area of investigation in such systems is the transfer of triplet exciton states to and from QDs, which has potential applications in the luminescent harvesting of triplet excitons generated by singlet fission, in photocatalysis and photochemical upconversion. While the transfer of energy from QDs to the triplet state of organic semiconductors has been intensely studied in recent years, the mechanism and materials parameters controlling the reverse process, triplet transfer to QDs, have not been well investigated. Here, through a combination of steady-state and time-resolved optical spectroscopy we study the mechanism and energetic dependence of triplet energy transfer from an organic ligand (TIPS-tetracene carboxylic acid) to PbS QDs. Over an energetic range spanning from exothermic (−0.3 eV) to endothermic (+0.1 eV) triplet energy transfer we find that the triplet energy transfer to the QD occurs through a single step process with a clear energy dependence that is consistent with an electron exchange mechanism as described by Marcus–Hush theory. In contrast, the reverse process, energy transfer from the QD to the triplet state of the ligand, does not show any energy dependence in the studied energy range; interestingly, a delayed formation of the triplet state occurs relative to the quantum dots’ decay. Based on the energetic dependence of triplet energy transfer we also suggest design criteria for future materials systems where triplet excitons from organic semiconductors are harvested via QDs, for instance in light emitting structures or the harvesting of triplet excitons generated via singlet fission.
We demonstrate that blend films containing poly(3-hexylthiophene-2,5-diyl) and in situ grown CdS display a greater yield of photogenerated charges than a blend containing an equivalent amount of pre-synthesised CdS quantum dots. Moreover, we show that the greater charge yield in the in situ grown films leads to an improvement in device efficiency. The present findings also appear to suggest that charge photogeneration at the CdS/polymer heterojunction is facilitated by the formation of nanoparticle networks as a result of CdS aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.