Diabetes is a metabolic disorder disease in which the pancreas does not produce enough insulin or the body cannot use insulin produced effectively. The HbA1c examination, which measures the average glucose level of patients during the last 2-3 months, has become an important step to determine the condition of diabetic patients. Knowledge of the patient's condition can help medical staff to predict the possibility of patient readmissions, namely the occurrence of a patient requiring hospitalization services back at the hospital. The ability to predict patient readmissions will ultimately help the hospital to calculate and manage the quality of patient care. This study compares the performance of the Naïve Bayes method and C4.5 Decision Tree in predicting readmissions of diabetic patients, especially patients who have undergone HbA1c examination. As part of this study we also compare the performance of the classification model from a number of scenarios involving a combination of preprocessing methods, namely Synthetic Minority Over-Sampling Technique (SMOTE) and Wrapper feature selection method, with both classification techniques. The scenario of C4.5 method combined with SMOTE and feature selection method produces the best performance in classifying readmissions of diabetic patients with an accuracy value of 82.74 %, precision value of 87.1 %, and recall value of 82.7 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.