ObjectiveMeibomian gland dysfunction (MGD) is a primary cause of dry eye disease. Analysis of MGD, its severity, shapes and variation in the acini of the meibomian glands (MGs) is receiving much attention in ophthalmology clinics. Existing methods for diagnosing, detection and analysing meibomianitis are not capable to quantify the irregularities to IR (infrared) images of MG area such as light reflection, interglands and intraglands boundaries, the improper focus of the light and positioning, and eyelid eversion.Methods and analysisWe proposed a model that is based on adversarial learning that is, conditional generative adversarial network that can overcome these blatant challenges. The generator of the model learns the mapping from the IR images of the MG to a confidence map specifying the probabilities of being a pixel of MG. The discriminative part of the model is responsible to penalise the mismatch between the IR images of the MG and confidence map. Furthermore, the adversarial learning assists the generator to produce a qualitative confidence map which is transformed into binary images with the help of fixed thresholding to fulfil the segmentation of MG. We identified MGs and interglands boundaries from IR images.ResultsThis method is evaluated by meiboscoring, grading, Pearson correlation and Bland-Altman analysis. We also judged the quality of our method through average Pompeiu-Hausdorff distance, and Aggregated Jaccard Index.ConclusionsThis technique provides a significant improvement in the quantification of the irregularities to IR. This technique has outperformed the state-of-art results for the detection and analysis of the dropout area of MGD.
Respiratory motion exhibits non-linear and non-stationary behavior in nature and this has been a great hindrance to the accurate prediction of tumor in motion adaptive radiotherapy. Accurate prediction of respiratory motion and subsequent tracking of tumor has been a challenge due to the irregularities and intra-trace variabilities. In order to overcome this issue, prediction models can be trained by using neural networks. However due to the burden of large training data, computational efficacy of existing neural networks can be affected. Moreover, training of neural networks using conventional methods like back-propagation (BP) may result in local minima and it may slow down the learning rate and convergence respectively. As a solution, in this paper, we employed random vector function link (RVFL) based neural networks to train the model in a very efficient way to achieve high accuracy in respiratory motion prediction. In RVFL, the direct link from input features to output layer acts as regularization to prevent the network from overfitting. The proposed method is tested with real respiratory motion traces acquired from 31 patients. Results show that RVFL with the use of direct link performs quite better than without direct link.
The world has been going through the global crisis of the coronavirus (COVID-19). It is a challenging situation for every country to tackle its healthcare system. COVID-19 spreads through physical contact with COVID-positive patients and causes potential damage to the country’s health and economy system. Therefore, to overcome the chance of spreading the disease, the only preventive measure is to maintain social distancing. In this vulnerable situation, virtual resources have been utilized in order to maintain social distance, i.e., the telehealth system has been proposed and developed to access healthcare services remotely and manage people’s health conditions. The telehealth system could become a regular part of our healthcare system, and during any calamity or natural disaster, it could be used as an emergency response to deal with the catastrophe. For this purpose, we proposed a conceptual telehealth framework in response to COVID-19. We focused on identifying critical issues concerning the use of telehealth in healthcare setups. Furthermore, the factors influencing the implementation of the telehealth system have been explored in detail. The proposed telehealth system utilizes artificial intelligence and data science to regulate and maintain the system efficiently. Before implementing the telehealth system, it is required that prearrangements be made, such as appropriate funding measures, the skills to know technological usage, training sessions, and staff endorsement. The barriers and influencing factors provided in this article can be helpful for future developments in telehealth systems and for making fruitful progress in fighting pandemics like COVID-19. At the same time, the same approach can be used to save the lives of many frontline workers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.