We propose a new self-stabilizing 1-maximal matching algorithm which is silent and works for any anonymous networks without a cycle of length of a multiple of 3 under a central unfair daemon. The 1-maximal matching is a 2 3-approximation to the maximum matching, and expected to get more matching pairs than a maximal matching, which only guarantees a 1 2-approximation. The time complexity of the proposed algorithm is O(e) moves, which is O(n) moves if we restrict the topology to trees or rings whose length is not a multiple of 3, where n and e be the numbers of nodes and edges in a graph, respectively. The best existing result for 1-maximal matching for anonymous networks is an algorithm of Goddard et al. [8] which works for anonymous trees and anonymous rings whose length is not a multiple of 3 under a central daemon, and the time complexity is O(n 4) moves. Therefore, the result in this paper is a significant improvement from the best existing results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.