We have demonstrated OPV accelerated degradation studies using concentrated sunlight, where the atmosphere, temperature and illumination intensity were independently controlled. Testing various schemes for controlling the sample temperature under concentrated sunlight showed that heating of P3HT:PCBM was caused by photons at the absorbed wavelength range and dissipation of excess photon energy, and not necessarily by IR photon absorption. Sunlight chopping was found to be an effective method for independent temperature control under illumination by concentrated sunlight.The first accelerated degradation tests using sunlight concentration applied to P3HT:PCBM blends were reported. P3HT:PCBM blends exposed to concentrated sunlight in the presence of traces of oxygen/ humidity showed degradation induced by photo-oxidation of the P3HT backbone within the P3HT:PCBM blend, which is significantly thermally accelerated, in agreement with previous observations. However, this could be demonstrated in a time scale of 1 Corresponding authors2 minutes and hours, i.e., significantly accelerated. Exposure of well encapsulated P3HT:PCBM films to concentrated sunlight demonstrated stability up to 3,600 sun*hours, corresponding to about 1.6 years of operating time. This result was obtained at 300 suns exposure after merely 12 hours, demonstrating the advantage of using concentrated sunlight for accelerated stability tests.These tests can therefore combine extremely high acceleration factors with profound understanding of the effect of various, independently controlled factors on the degradation mechanisms.
Stabilities of ITO-containing and ITO-free organic solar cells were investigated under simulated AM 1.5G illumination and under concentrated natural sunlight. In both cases ITO-free devices exhibit high stability, while devices containing ITO show degradation of their photovoltaic performance. The accelerated degradation under concentrated sunlight (of up to 20 suns) in ITO-containing devices was found to be reversible. Dark exposure of degraded samples can partly restore performance. A possible underlying mechanism for such a phenomenon is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.