We present models which complete missing text given transliterations of ancient Mesopotamian documents, originally written on cuneiform clay tablets (2500 BCE -100 CE). Due to the tablets' deterioration, scholars often rely on contextual cues to manually fill in missing parts in the text in a subjective and time-consuming process. We identify that this challenge can be formulated as a masked language modelling task, used mostly as a pretraining objective for contextualized language models. Following, we develop several architectures focusing on the Akkadian language, the lingua franca of the time. We find that despite data scarcity (1M tokens) we can achieve state of the art performance on missing tokens prediction (89% hit@5) using a greedy decoding scheme and pretraining on data from other languages and different time periods. Finally, we conduct human evaluations showing the applicability of our models in assisting experts to transcribe texts in extinct languages.
We deal with the scenario of conversational search, where user queries are under-specified or ambiguous. This calls for a mixed-initiative setup. User-asks (queries) and system-answers, as well as system-asks (clarification questions) and user response, in order to clarify her information needs. We focus on the task of selecting the next clarification question, given the conversation context. Our method leverages passage retrieval from a background content to fine-tune two deep-learning models for ranking candidate clarification questions. We evaluated our method on two different use-cases. The first is an open domain conversational search in a large web collection. The second is a taskoriented customer-support setup. We show that our method performs well on both use-cases.
Intent detection with semantically similar fine-grained intents is a challenging task. To address it, we reformulate intent detection as a question-answering retrieval task by treating utterances and intent names as questions and answers. To that end, we utilize a question-answering retrieval architecture and adopt a two stages training schema with batch contrastive loss. In the pre-training stage, we improve query representations through self-supervised training. Then, in the finetuning stage, we increase contextualized token-level similarity scores between queries and answers from the same intent. Our results on three few-shot intent detection benchmarks achieve state-of-the-art performance.
Applying Reinforcement learning (RL) following maximum likelihood estimation (MLE) pre-training is a versatile method for enhancing neural machine translation (NMT) performance. However, recent work has argued that the gains produced by RL for NMT are mostly due to promoting tokens that have already received a fairly high probability in pre-training. We hypothesize that the large action space is a main obstacle to RL's effectiveness in MT, and conduct two sets of experiments that lend support to our hypothesis. First, we find that reducing the size of the vocabulary improves RL's effectiveness. Second, we find that effectively reducing the dimension of the action space without changing the vocabulary also yields notable improvement as evaluated by BLEU, semantic similarity, and human evaluation. Indeed, by initializing the network's final fully connected layer (that maps the network's internal dimension to the vocabulary dimension), with a layer that generalizes over similar actions, we obtain a substantial improvement in RL performance: 1.5 BLEU points on average. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.