The present study used functional magnetic resonance to examine the cerebral activity pattern associated with musical perception in musicians and non-musicians. Musicians showed left dominant secondary auditory areas in the temporal cortex and the left posterior dorsolateral prefrontal cortex during a passive music listening task, whereas non-musicians demonstrated right dominant secondary auditory areas during the same task. A significant difference in the degree of activation between musicians and non-musicians was noted in the bilateral planum temporale and the left posterior dorsolateral prefrontal cortex. The degree of activation of the left planum temporale correlated well with the age at which the person had begun musical training. Furthermore, the degree of activation in the left posterior dorsolateral prefrontal cortex and the left planum temporale correlated significantly with absolute pitch ability. The results indicated distinct neural activity in the auditory association areas and the prefrontal cortex of trained musicians. We suggest that such activity is associated with absolute pitch ability and the use-dependent functional reorganization produced by the early commencement of long-term training.
The aim of this study was to determine which brain structures show the greatest influence of partial volume effects (PVE) in single-photon emission tomography (SPET) studies on Alzheimer's disease (AD). Brain perfusion SPET was performed in 30 patients with probable AD and 62 age-matched healthy volunteers. SPET images were corrected for PVE using grey matter volume segmented from magnetic resonance images. The most prominent changes after PVE correction were observed in the medial temporal structures. The PVE correction revealed a selective decrease in regional cerebral blood flow (rCBF) in the parahippocampal gyrus of AD without rCBF decreases in the hippocampus, which had been observed before correction. This correction seems to be essential in order to achieve accurate measurements of rCBF in SPET, which has limited spatial resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.