Tau aggregation and amyloid β protein (Aβ) deposition are the main causes of Alzheimer's disease (AD). Peroxisome proliferator-activated receptor γ (PPARγ) activation modulates Aβ production. To test whether the PPARγ agonist pioglitazone (PIO) is also effective in preventing tau aggregation in AD, we used a cellular model in which wild-type tau protein (4R0N) is overexpressed (M1C cells) (Hamano et al., 2012) as well as primary neuronal cultures. PIO reduced both phosphorylated and total tau levels, and inactivated glycogen synthase kinase 3β, a major tau kinase, associated with activation of Akt. In addition, PIO decreased cleaved caspase3 and C-terminal truncated tau species by caspase, which is expected to decrease tau aggregation. A fractionation study showed that PIO reduced high molecular-weight (120 kDa), oligomeric tau species in Tris Insoluble, sarkosyl-soluble fractions. Tau decrease was reversed by adding GW9662, a PPARγ antagonist. Together, our current results support the idea that PPARγ agonists may be useful therapeutic agents for AD.
Although folate deficiency was reported to be associated with hyperhomocysteinemia, influence of folate supplementation on cognition remains controversial. Therefore, we explored the effects of folate supplementation on the cognition and Homocysteine (Hcy) level in relatively short periods in patients with folate deficiency and cognitive impairment. Enrolled 45 patients (mean age of 79.7 ± 7.9 years old) with folate deficiency (<3.6 ng/mL) with cognitive impairment underwent Mini-Mental State Examination (MMSE), and laboratory examinations, including folate, vitamin B12, and Hcy. The degree of hippocampal atrophy in MRI was estimated using a voxel-based specific regional analysis system for Alzheimer’s disease (VSRAD). Patients were administrated folate (5 mg/day), then Hcy, and MMSE score were re-examined after 28 to 63 days. Mean Hcy significantly decreased from 25.0 ± 18.0 to 11.0 ± 4.3 nmol/mL (p < 0.001). Average MMSE scores also significantly changed from 20.1 ± 4.7 to 22.2 ± 4.3 (p < 0.001). The degree of change in the MMSE score and basic Hcy or Hcy change was significantly positively correlated, while degree of hippocampal atrophy in MRI did not. Although several factors should be taken into account, folate supplementation ameliorated cognitive impairment, at least for a short period, in patients with folate deficiency.
The neuropathological hallmarks of Alzheimer’s disease (AD) are senile plaques (SPs), which are composed of amyloid β protein (Aβ), and neurofibrillary tangles (NFTs), which consist of highly phosphorylated tau protein. As bio-metal imbalance may be involved in the formation of NFT and SPs, metal regulation may be a direction for AD treatment. Clioquinol (CQ) is a metal-protein attenuating compound with mild chelating effects for Zn2+ and Cu2+, and CQ can not only detach metals from SPs, but also decrease amyloid aggregation in the brain. Previous studies suggested that Cu2+ induces the hyperphosphorylation of tau. However, the effects of CQ on tau were not fully explored. To examine the effects of CQ on tau metabolism, we used a human neuroblastoma cell line, M1C cells, which express wild-type tau protein (4R0N) via tetracycline-off (TetOff) induction. In a morphological study and ATP assay, up to 10 μM CQ had no effect on cell viability; however, 100 μM CQ had cytotoxic effects. CQ decreased accumulation of Cu+ in the M1C cells (39.4% of the control), and both total and phosphorylated tau protein. It also decreased the activity of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) (37.3% and 60.7% levels of the control, respectively), which are tau kinases. Of note, activation of protein phosphatase 2A (PP2A), which is a tau phosphatase, was also observed after CQ treatment. Fractionation experiments demonstrated a reduction of oligomeric tau in the tris insoluble, sarkosyl soluble fraction by CQ treatment. CQ also decreased caspase-cleaved tau, which accelerated the aggregation of tau protein. CQ activated autophagy and proteasome pathways, which are considered important for the degradation of tau protein. Although further studies are needed to elucidate the mechanisms responsible for the effects of CQ on tau, CQ may shed light on possible AD therapeutics.
Vitamin B12 deficiency is associated with cognitive impairment, hyperhomocysteinemia, and hippocampal atrophy. However, the recovery of cognition with vitamin B12 supplementation remains controversial. Of the 1716 patients who visited our outpatient clinic for dementia, 83 had vitamin B12 deficiency. Among these, 39 patients (mean age, 80.1 ± 8.2 years) had undergone Mini-Mental State Examination (MMSE) and laboratory tests for vitamin B12, homocysteine (Hcy), and folic acid levels. The hippocampal volume was estimated using the z-score of the MRI-voxel-based specific regional analysis system for Alzheimer’s disease. This is multi-center, open-label, single-arm study. All the 39 patients were administered vitamin B12 and underwent reassessment to measure the retested for MMSE and Hcy after 21−133 days (median = 56 days, interquartile range (IQR) = 43–79 days). After vitamin B12 supplementation, the mean MMSE score improved significantly from 20.5 ± 6.4 to 22.9 ± 5.5 (p < 0.001). Hcy level decreased significantly from 22.9 ± 16.9 nmol/mL to 11.5 ± 3.9 nmol/mL (p < 0.001). Significant correlation was detected between the extent of change in MMSE scores and baseline Hcy values. The degree of MMSE score was not correlated with hippocampal atrophy assessed by the z-score. While several other factors should be considered, vitamin B12 supplementation resulted in improved cognitive function, at least in the short term, in patients with vitamin B12 deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.