The highly fluctuated renewable generations and electric vehicles have undergone tremendous growth in recent years. The majority of them are connected to the grid via power electronic devices, resulting in wide variation ranges for several key parameters in the frequency response model (FRM) such as system inertia and load damping factor. In this paper, an automatic generation control (AGC) method considering the uncertainties of these key parameters is proposed. First, the historical power system operation data following large power disturbances are used to identify the FRM key parameters offline. Second, the offline identification results and the normal operation data prior to the occurrence of the disturbance are used to train the online probability estimation model of the FRM key parameters. Third, the online estimation results of the FRM key parameters are used as the input, and the model predictive-based AGC signal optimization method is developed based on distributionally robust optimization (DRO) technology. Case studies conducted on the IEEE 118-Bus System show that the proposed AGC method outperforms the widely utilized PI-based control method in terms of performance and efficiency.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.