Trace water content in the electrolyte causes the degradation of LiPF, and the decomposed products further react with water to produce HF, which alters the surface of anode and cathode. As a result, the reaction of HF and the deposition of decomposed products on electrode surface cause significant capacity fading of cells. Avoiding these phenomena is crucial for lithium ion batteries. Considering the Lewis-base feature of the N-Si bond, 1-(trimethylsilyl)imidazole (1-TMSI) is proposed as a novel water scavenging electrolyte additive to suppress LiPF decomposition. The scavenging ability of 1-TMSI and beneficiary interfacial chemistry between the MCMB electrode and electrolyte are studied through a combination of experiments and density functional theory (DFT) calculations. NMR analysis indicated that LiPF decomposition by water was effectively suppressed in the presence of 0.2 vol % 1-TMSI. XPS surface analysis of MCMB electrode showed that the presence of 1-TMSI reduced deposition of ionic insulating products caused by LiPF decomposition. The results showed that the cells with 1-TMSI additive have better performance than the cell without 1-TMSI by facilitating the formation of solid-electrolyte interphase (SEI) layer with better ionic conductivity. It is hoped that the work can contribute to the understanding of SEI and the development of electrolyte additives for prolonged cycle life with improved performance.
The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and solid electrolyte interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at subzero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents-ethylene carbonate (EC), and fluoroethylene carbonate. The formation of an efficient passivation layer in propylene carbonate-based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.
Copper-based electrodes can catalyze electroreduction of CO2 to two-carbon products. However, obtaining a specific product with high efficiency depends on the oxidation state of Cu for the Cu-based materials. In this study, Cu-based electrodes were prepared on fluorinated tin oxide (FTO) using the one-step electrodeposition method. These electrodes were used as efficient electrocatalysts for CO2 reduction to ethanol. The concentration ratio of Cu0 and Cu+ on the electrodes was precisely modulated by adding monoethanolamine (MEA). The results of spectroscopic characterization showed that the concentration ratio of localized Cu+ and Cu0 (Cu+/Cu0) on the Cu-based electrodes was controlled from 1.24/1 to 1.54/1 by regulating the amount of MEA. It was found that the electrode exhibited the best electrochemical efficiency and ethanol production in the CO2 reduction reaction at the optimal concentration ratio Cu+/Cu0 of 1.42/1. The maximum faradaic efficiencies of ethanol and C2 were 48% and 77%, respectively, at the potential of −0.6 V vs. a reversible hydrogen electrode (RHE). Furthermore, the optimal concentration ratio of Cu+/Cu0 achieved the balance between Cu+ and Cu0 with the most favorable free energy for the formation of *CO intermediate. The stable existence of the *CO intermediate significantly contributed to the formation of the C–C bond for ethanol production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.