Now a day's intranasal (i.n) drug delivery is emerging as a reliable method to bypass the bloodbrain barrier (BBB) and deliver a wide range of therapeutic agents including both small and large molecules, growth factors, viral vectors and even stem cells to the brain and has shown therapeutic effects in both animals and humans. This route involves the olfactory or trigeminal nerve systems which initiate in the brain and terminate in the nasal cavity at the olfactory neuroepithelium or respiratory epithelium. They are the only externally exposed portions of the central nervous system (CNS) and therefore represent the most direct method of noninvasive entry into the brain. This approach has been primarily used to explore therapeutic avenues for neurological diseases. The potential for treatment possibilities with olfactory transfer of drugs will increase as more effective formulations and delivery devices are developed. Recently, the apomorphine hydrochloride dry powders have been developed for i.n. delivery (Apomorphine nasal, Lyonase technology, Britannia Pharmaceuticals, Surrey, UK). The results of clinical trial Phase III suggested that the prepared formulation had clinical effect equivalent to subcutaneously administered apomorphine. In coming years, intranasal delivery of drugs will demand more complex and automated delivery devices to ensure accurate and repeatable dosing. Thus, new efforts are needed to make this noninvasive route of delivery more efficient and popular, and it is also predicted that in future a range of intranasal products will be used in diagnosis as well as treatment of CNS diseases. This review will embark the existing evidence of nose-to-brain transport. It also provides insights into the most relevant pre-clinical studies of direct nose-brain delivery and delivery devices which will provide relative success of intranasal delivery system. We have, herein, outlined the relevant aspects of CNS drugs given intranasally to direct the brain in treating CNS disorders like Alzheimer's disease, depression, migraine, schizophrenia, etc.
The structure of the eye is very complex in nature which makes it a challenging task for
pharmaceutical researchers to deliver the drug at the desired sites via different routes of administration.
The development of the nano-based system helped in delivering the drug in the desired concentration.
Improvement in penetration property, bioavailability, and residence time has all been achieved by encapsulating
drugs into liposomes, dendrimers, solid lipid nanoparticle, nanostructured lipid carrier,
nanoemulsion, and nanosuspension. This review puts emphasis on the need for nanomedicine for ocular
drug delivery and recent developments in the field of nanomedicine along with recent patents published
in the past few years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.